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Balance two (somewhat) competing goals

– Maximize predictive power from leading twist 
collinear pQCD as Q → 	∞

 
– Find sensitivity to hadron structure (typical 

experimental scales: Q ≈ 1 − 4	GeVs.) 
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the multiplicities of positively charged hadrons as a
function of P2

hT fitted using F1. The values of the fitted
parameters are given in Table V. As described above for
Ref. [10], the two exponential functions in our paramet-
rization F1 can be attributed to two completely different
underlying physics mechanisms that overlap in the region
P2
hT ≃ 1 ðGeV=cÞ2. Figure 18 shows, as an example,

multiplicities of positively charged hadrons as a function
of P2

hT, measured at hQ2i ∼ 1.25 ðGeV=cÞ2 for two bins of
x with average values hxi ¼ 0.006 and hxi ¼ 0.016, in the
four z bins. The values of the fitted parameters are given in
Table V. Only statistical uncertainties are shown and used in
the fit. Values of χ2dof of about 1 are obtained in all (x,Q

2, z)
bins, except for a few (6 out of 81) bins, where values as
small as 0.52 and as large as 2.52 are obtained. The
normalization coefficients N1 and N0

1 are found to have a
strong variation with x and z and a rather weak variation
with Q2, reflecting the (x, Q2) dependence of collinear
PDFs and the z dependence of collinear FFs. The inverse
slope α1 has an average value of about 0.23 ðGeV=cÞ2 for
Q2 < 3 ðGeV=cÞ2 and about 0.28 ðGeV=cÞ2 for larger
values of Q2. Its dependence on z2 is discussed below
using Fig. 19. The inverse slope α01 has an average value of
about 0.6 ðGeV=cÞ2 and shows a rather weak variation
with x and Q2.
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FIG. 17. Multiplicities of positively chargedhadrons as a function
of P2

hT for hQ2i ¼ 1.25 ðGeV=cÞ2, hxi ¼ 0.006 and hzi ¼ 0.25.
The black dotted curve represents the first exponential function
f1¼ðN1=α1Þexpð−P2

hT=α1Þ, the blue dashed curve represents the
second exponential function f2¼ðN0

1=α
0
1Þexpð−P2

hT=α
0
1Þ, and the

red curve represents the sum (f1 þ f2) as in Eq. (9). Only statistical
uncertainties are shown and used in the fit.

TABLE V. Fitted parameters of Figs. 17, 18, and 20.

0.003 < x < 0.008 and 1 < Q2=ðGeV=cÞ2 < 1.7

F1

z range N1 α1 N0
1 α01

0.20 < z < 0.30 1.47% 0.02 0.197% 0.003 0.46% 0.02 0.62% 0.02
0.30 < z < 0.40 0.73% 0.02 0.237% 0.005 0.23% 0.02 0.72% 0.03
0.40 < z < 0.60 0.26% 0.01 0.246% 0.008 0.16% 0.01 0.69% 0.03
0.60 < z < 0.80 0.063% 0.005 0.18% 0.01 0.086% 0.005 0.62% 0.02

0.013 < x < 0.020 and 1 < Q2=ðGeV=cÞ2 < 1.7

F1

z range N1 α1 N0
1 α01

0.20 < z < 0.30 1.74% 0.03 0.189% 0.004 0.43% 0.03 0.55% 0.02
0.30 < z < 0.40 0.91% 0.03 0.222% 0.005 0.24% 0.03 0.59% 0.03
0.40 < z < 0.60 0.38% 0.02 0.268% 0.007 0.11% 0.02 0.67% 0.04
0.60 < z < 0.80 0.07% 0.01 0.18% 0.02 0.12% 0.01 0.51% 0.02

0.008 < x < 0.013 and 1.7 < Q2=ðGeV=cÞ2 < 3

F1

z range N1 α1 N0
1 α01

0.30 < z < 0.40 0.76% 0.03 0.259% 0.007 0.20% 0.03 0.76% 0.06
F2

z range N2 q T

0.30 < z < 0.40 3.39% 0.05 1.180% 0.007 0.234% 0.004
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FIG. 17. Multiplicities of positively chargedhadrons as a function
of P2

hT for hQ2i ¼ 1.25 ðGeV=cÞ2, hxi ¼ 0.006 and hzi ¼ 0.25.
The black dotted curve represents the first exponential function
f1¼ðN1=α1Þexpð−P2

hT=α1Þ, the blue dashed curve represents the
second exponential function f2¼ðN0

1=α
0
1Þexpð−P2

hT=α
0
1Þ, and the

red curve represents the sum (f1 þ f2) as in Eq. (9). Only statistical
uncertainties are shown and used in the fit.
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hT for hQ2i ¼ 1.25 ðGeV=cÞ2, hxi ¼ 0.006 and hzi ¼ 0.25.
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hT=α1Þ, the blue dashed curve represents the
second exponential function f2¼ðN0

1=α
0
1Þexpð−P2

hT=α
0
1Þ, and the

red curve represents the sum (f1 þ f2) as in Eq. (9). Only statistical
uncertainties are shown and used in the fit.

TABLE V. Fitted parameters of Figs. 17, 18, and 20.

0.003 < x < 0.008 and 1 < Q2=ðGeV=cÞ2 < 1.7

F1

z range N1 α1 N0
1 α01

0.20 < z < 0.30 1.47% 0.02 0.197% 0.003 0.46% 0.02 0.62% 0.02
0.30 < z < 0.40 0.73% 0.02 0.237% 0.005 0.23% 0.02 0.72% 0.03
0.40 < z < 0.60 0.26% 0.01 0.246% 0.008 0.16% 0.01 0.69% 0.03
0.60 < z < 0.80 0.063% 0.005 0.18% 0.01 0.086% 0.005 0.62% 0.02

0.013 < x < 0.020 and 1 < Q2=ðGeV=cÞ2 < 1.7

F1

z range N1 α1 N0
1 α01

0.20 < z < 0.30 1.74% 0.03 0.189% 0.004 0.43% 0.03 0.55% 0.02
0.30 < z < 0.40 0.91% 0.03 0.222% 0.005 0.24% 0.03 0.59% 0.03
0.40 < z < 0.60 0.38% 0.02 0.268% 0.007 0.11% 0.02 0.67% 0.04
0.60 < z < 0.80 0.07% 0.01 0.18% 0.02 0.12% 0.01 0.51% 0.02

0.008 < x < 0.013 and 1.7 < Q2=ðGeV=cÞ2 < 3

F1

z range N1 α1 N0
1 α01

0.30 < z < 0.40 0.76% 0.03 0.259% 0.007 0.20% 0.03 0.76% 0.06
F2

z range N2 q T

0.30 < z < 0.40 3.39% 0.05 1.180% 0.007 0.234% 0.004
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“…the two exponential functions in 
our paramerization F1
can be attributed to two 
completely different 
underlying physics mechanisms 
that overlap in the
region P2

hT ≃ 1 GeV2. “
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Q matters too
How to treat
 Λ!"# ≪ 𝑞$ ≪ 𝑄 ?



Separating large and small transverse momentum in 
factorization theorems
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• Expansion at large qT: 

• Explicit error:
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Collinear factorization 
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•  • TMD version

• Inclusive DIS
 XZ
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How it works in an easy case 

7

• Stress-test DIS factorization in other finite-range, 
renormalizable theories

• Exact 𝑂 𝜆!  (SI)DIS cross section is easy to calculate

21

• Stress-test assertions in any finite-range  renormalizable 
theory

• Exact Ο(#!) DIS cross section is easy to calculate exactly
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FIG. 1: Contributions to DIS from Eq. (16) at O (↵ a�). Graph (a) is the handbag diagram that contributes at leading power

and small transverse momentum. Graphs (b) and (c) contribute at leading power to large kT (the Hermitian conjugate for (c)

is not shown). The momenta of the virtual photon is (q) and the target nucleon is (p).

where cWµ⌫
f/f 0(x/⇠, q) is a partonic structure tensor for a massless, on-shell partonic target of flavor f 0, ff 0/p(⇠;µ) is a

pdf for a parton flavor f 0 in target p, µ is a renormalization group scale, and
P

f,f 0 is a sum over all flavors. The last
line defines the usual convolution notation:
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Z 1
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⇠
A(x/⇠)B(⇠) . (13)

The analogous expressions for structure functions are
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.

In the limit that O
�
m

2
/Q

2
�
terms are negligible, the structure functions have process-specific parts, F̂1,2, and pdfs,

ff 0/p, that are intrinsic to the target. The separation and identification of these pieces when m
2 ⌧ Q

2 is the
factorization we aim to illustrate in Secs. V–VI.

III. MASSIVE SCALAR YUKAWA THEORY

We will use the Yukawa field theory with the following interaction term:

Lint = �� N  q � + H.C. . (16)

A  N particle is taken to be the spin-1/2 target, and we will refer to it as a “nucleon” with mass mp. In addition,
there is a spin-1/2 “quark” field  q with mass mq, and a zero charge scalar “diquark” or “gluon” state � with a mass
ms. The numerical value of � fixes the strength of this interaction. We will find it useful to use the notation

a�(µ) ⌘
�
2

16⇡2
, (17)

in analogy with similar notation, as = g
2
s/(16⇡

2) perturbative in QCD. We will assume that a� is very small at some
initial scale. There are no infrared divergences since masses are non-zero, and ultra-violet divergences are handled by
standard renormalization.

The lowest order graphs that contribute to W
µ⌫ away from the x = 1 elastic limit are shown in Fig. 1. We will

calculate them in two ways:

1. By an exact evaluation of the graphs. This can be done without much di�culty in the Yukawa theory1

1 This was done in [1], so we do not discuss the details further here.
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is not shown). The momenta of the virtual photon is (q) and the target nucleon is (p).
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initial scale. There are no infrared divergences since masses are non-zero, and ultra-violet divergences are handled by
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The lowest order graphs that contribute to W
µ⌫ away from the x = 1 elastic limit are shown in Fig. 1. We will

calculate them in two ways:

1. By an exact evaluation of the graphs. This can be done without much di�culty in the Yukawa theory1
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Parton densities with MS-bar renormalization

8

• Collinear

• Transverse momentum dependent (TMD)
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FIG. 3: The unfactorized (a) F1(xbj, Q) and (b) F2(xbj, Q) corresponding to Fig. 2 with mp = ms = 1.0 GeV and
mq = 0.3 GeV. The vertical dashed lines indicate the kinematical upper limits on xbj for each value of Q (see
Eq. (A25)).

Note carefully that our use of the term “bare” for the pdf is in the track A sense of Ref. [3]. Notice also the absence
of a Wilson line operator in Eq. (19) as compared to what we would need in a gauge theory like QCD.

Implementing dimensional regularization, expanding Eq. (20) through order a�, and applying MS renormalization
by subtracting the S✏/✏ pole gives

f
(0)

p/p(⇠;µ) =

Z
dk

� d2�2✏kT

(2⇡)4�2✏
Tr

2

6666664

�
+
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k

3

7777775
= �pp�(1� ⇠) , (22)

f
(1)

q/p(⇠;µ)
⇠ 6=1
=

Z
dk

� d2�2✏kT

(2⇡)4�2✏
Tr

2

66664
�

+

2 p

k

3

77775
+MS C.T.

= a�(µ)(1� ⇠)

✓
�(⇠)2

�(⇠)2
+ ln


µ

2

�(⇠)2

�
� 1

◆
, (23)

where in the last line we have used the abbreviations

�(⇠)2 ⌘ ⇠m
2

s + (1� ⇠)m2

q � ⇠(1� ⇠)m2

p , �(⇠)2 ⌘ (mq + ⇠mp)
2
, (24)

and where the MS counterterm is

MS C.T. = �a�(µ)(1� ⇠)
S✏

✏
. (25)

Eq. (23) is obtained in dimensional regularization after we calculated the integral

a�(µ)

⇡
(2⇡µ)2✏(1� ⇠)

Z
d2�2✏kT

k
2

T
+ �(⇠)2

⇥
k

2

T
+�(⇠)2

⇤2 +MS C.T. , (26)

with the counterterm added, and where we set ✏ = 0.

7

The bare quark TMD pdf for a flavor i in hadron p is similarly defined as

f0,i/p(⇠,kT) =

Z
dw

� d2wT

(2⇡)3
e
�i⇠p+w�

+ikT·wT hp|  ̄0,i(0, w
�

,wT)
�

+

2
 0,i(0, 0,0T) |pi . (27)

To get a renormalized TMD pdf in the Yukawa theory, we only need to switch to the renormalized field

f0,i/p(⇠,kT) = Z2

Z
dw

� d2wT

(2⇡)3
e
�i⇠p+w�

+ikT·wT hp|  ̄i(0, w
�

,wT)
�

+

2
 i(0, 0,0T) |pi = Z2fi/p(⇠,kT;µ). (28)

The wavefunction renormalization has the form Z2 = 1 + O(a�). There is no O(a�) self-energy contribution in the
O(a�) graphs in Fig. 2, so we will have no explicit Z2 contribution to our O(a�) quark-in-hadron TMD pdf. Therefore,
the expression for the TMD pdf fq/p(⇠,kT;µ) is obtained by simply dropping the counterterm in Eq. (26), keeping
the integrand of the first term, and taking the limit to 4 dimensions:

fq/p(⇠,kT;µ) =
a�(µ)

⇡
(1� ⇠)

k
2

T
+ �(⇠)2

⇥
k

2

T
+�(⇠)2

⇤2 . (29)

We will need these expressions in later sections.
Dealing with divergences and evolution in the Yukawa theory is far simpler than in the gauge theory case due to

the absence of Wilson lines or light-cone divergences. In the Yukawa theory, TMD evolution of the quark-in-hadron
TMD pdf is also very simple because it only involves the wavefunction normalization Z2 in Eq. (28) (TomRai: ,
needed at order a�). The TMD evolution equation is just

d

d lnµ
ln fq/p(⇠,kT;µ) = �2�2(a�(µ)) , (30)

where

�2(a�(µ)) ⌘
1

2

d lnZ2

d lnµ
. (31)

At lowest order,

�
(1)

2
(a�(µ)) = �

a�(µ)

2
. (32)

The solution to the evolution equation is

fq/p(⇠,kT;µ) = fq/p(⇠,kT;µ0) exp

⇢
�2

Z µ

µ0

dµ

µ
�2(a�(µ))

�
, (33)

where evolution is from a reference scale µ0 up to a generic large scale µ.
There are alternative ways to give an exact definition to a collinear pdf. One way that very closely coincides with

parton model intuition is to define it as the TMD pdf integrated up to a cuto↵ kc,

f
c
q/p(⇠;µ; kc) ⌘ ⇡

Z k2
c

0

dk
2

T
fq/p(⇠,kT;µ) . (34)

Usually, kc is set equal to µ, but this need not be the case. This way of defining a TMD pdf is preferred in many
areas of small-x physics, e.g. [7, 8], where it is usually called an “unintegrated” pdf. With the TMD pdf calculated
in Eq. (29), the cuto↵ definition is

f
c
q/p(⇠;µ; kc) = a�(µ)(1� ⇠)


ln

✓
�(⇠)2 + k

2
c

�(⇠)2

◆
�

k
2
c

k2
c +�(⇠)2

+
k

2
c�(⇠)

2

�(⇠)2 [�(⇠)2 + k2
c ]

�
. (35)

This definition of the collinear pdf only equals the standard MS definition in Eq. (23) when kc = µ and O
�
m

2
/µ

2
�

corrections are neglected. Beyond lowest order, the relationship between the cuto↵ and the renormalized definitions
can also involve non-power-suppressed terms, and in gauge theories there are complications with the Wilson line in
relations like Eq. (34) that we will not address here (see, however, the detailed discussion in [9]).
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FIG. 3: The unfactorized (a) F1(xbj, Q) and (b) F2(xbj, Q) corresponding to Fig. 2 with mp = ms = 1.0 GeV and
mq = 0.3 GeV. The vertical dashed lines indicate the kinematical upper limits on xbj for each value of Q (see
Eq. (A25)).

Note carefully that our use of the term “bare” for the pdf is in the track A sense of Ref. [3]. Notice also the absence
of a Wilson line operator in Eq. (19) as compared to what we would need in a gauge theory like QCD.

Implementing dimensional regularization, expanding Eq. (20) through order a�, and applying MS renormalization
by subtracting the S✏/✏ pole gives

f
(0)

p/p(⇠;µ) =

Z
dk

� d2�2✏kT

(2⇡)4�2✏
Tr

2

6666664

�
+

2

p

k

3

7777775
= �pp�(1� ⇠) , (22)

f
(1)

q/p(⇠;µ)
⇠ 6=1
=

Z
dk

� d2�2✏kT

(2⇡)4�2✏
Tr

2

66664
�

+

2 p

k

3

77775
+MS C.T.

= a�(µ)(1� ⇠)

✓
�(⇠)2

�(⇠)2
+ ln


µ

2

�(⇠)2

�
� 1

◆
, (23)

where in the last line we have used the abbreviations

�(⇠)2 ⌘ ⇠m
2

s + (1� ⇠)m2

q � ⇠(1� ⇠)m2

p , �(⇠)2 ⌘ (mq + ⇠mp)
2
, (24)

and where the MS counterterm is

MS C.T. = �a�(µ)(1� ⇠)
S✏

✏
. (25)

Eq. (23) is obtained in dimensional regularization after we calculated the integral

a�(µ)

⇡
(2⇡µ)2✏(1� ⇠)

Z
d2�2✏kT

k
2

T
+ �(⇠)2

⇥
k

2

T
+�(⇠)2

⇤2 +MS C.T. , (26)

with the counterterm added, and where we set ✏ = 0.
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FIG. 3: The unfactorized (a) F1(xbj, Q) and (b) F2(xbj, Q) corresponding to Fig. 2 with mp = ms = 1.0 GeV and
mq = 0.3 GeV. The vertical dashed lines indicate the kinematical upper limits on xbj for each value of Q (see
Eq. (A25)).

Note carefully that our use of the term “bare” for the pdf is in the track A sense of Ref. [3]. Notice also the absence
of a Wilson line operator in Eq. (19) as compared to what we would need in a gauge theory like QCD.

Implementing dimensional regularization, expanding Eq. (20) through order a�, and applying MS renormalization
by subtracting the S✏/✏ pole gives
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, (23)

where in the last line we have used the abbreviations
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, (24)
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. (25)

Eq. (23) is obtained in dimensional regularization after we calculated the integral
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with the counterterm added, and where we set ✏ = 0.
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FIG. 3: The unfactorized (a) F1(xbj, Q) and (b) F2(xbj, Q) corresponding to Fig. 2 with mp = ms = 1.0 GeV and
mq = 0.3 GeV. The vertical dashed lines indicate the kinematical upper limits on xbj for each value of Q (see
Eq. (A25)).

Note carefully that our use of the term “bare” for the pdf is in the track A sense of Ref. [3]. Notice also the absence
of a Wilson line operator in Eq. (19) as compared to what we would need in a gauge theory like QCD.

Implementing dimensional regularization, expanding Eq. (20) through order a�, and applying MS renormalization
by subtracting the S✏/✏ pole gives
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where in the last line we have used the abbreviations

�(⇠)2 ⌘ ⇠m
2

s + (1� ⇠)m2

q � ⇠(1� ⇠)m2

p , �(⇠)2 ⌘ (mq + ⇠mp)
2
, (24)

and where the MS counterterm is

MS C.T. = �a�(µ)(1� ⇠)
S✏

✏
. (25)

Eq. (23) is obtained in dimensional regularization after we calculated the integral

a�(µ)

⇡
(2⇡µ)2✏(1� ⇠)

Z
d2�2✏kT

k
2

T
+ �(⇠)2

⇥
k

2

T
+�(⇠)2

⇤2 +MS C.T. , (26)

with the counterterm added, and where we set ✏ = 0.

Parton distribution function

Parton densities with MS-bar renormalization

mhadron = 1.0 GeV ,mspectator = 2.0 GeV
<latexit sha1_base64="ZcIMKrCRdsHn/9ZOfWnEPtpouOw="></latexit>

mquark = 0.3 GeV
<latexit sha1_base64="/hattnD0t2JGYHgGxrlUCjYceow=">AAACCHicbVDJSgNBEO2JW4zbqEcPNgbBU5hJBL0IQQ96jGAWSELo6VSSJj2L3TViGOLNi7/ixYMiXv0Eb/6NneWgiQ8KHu9VUVXPi6TQ6DjfVmphcWl5Jb2aWVvf2Nyyt3cqOowVhzIPZahqHtMgRQBlFCihFilgvieh6vUvRn71DpQWYXCDgwiaPusGoiM4QyO17H2/1UC4x+Q2Zqo/pGfUyRUeJtIlVIYtO+vknDHoPHGnJEumKLXsr0Y75LEPAXLJtK67ToTNhCkUXMIw04g1RIz3WRfqhgbMB91Mxo8M6aFR2rQTKlMB0rH6eyJhvtYD3zOdPsOenvVG4n9ePcbOaTMRQRQjBHyyqBNLiiEdpULbQgFHOTCEcSXMrZT3mGIcTXYZE4I7+/I8qeRzbiGXvz7OFs+ncaTJHjkgR8QlJ6RIrkiJlAknj+SZvJI368l6sd6tj0lryprO7JI/sD5/AGwHmZU=</latexit>
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Note the factor of ⇣ multiplying kT in the argument of the TMD FF. The hard factor is

Hij(µ/Q;µ)µ⌫ =
zh

2
Tr[�⌫�+

�
µ
�
�]|H(µ/Q;µ)|2ij (67)

with |H(µ/Q;µ)|2 a hard vertex factor that in perturbation theory takes the form

|H(µ/Q;µ)|2ij = 1 +O(a�(µ)) . (68)

The unpolarized quark structure functions follow from Eq. (12),

Pµ⌫
1

Hij(µ/Q;µ)µ⌫ = H1(µ/Q;µ)�iq�jq = 2 zh|H(µ/Q;µ)|2ij ,

Pµ⌫
2

Hij(µ/Q;µ)µ⌫ = H2(µ/Q;µ)�iq�jq = 4 zhxbj|H(µ/Q;µ)|2ij . (69)

The above is general, and applies equally to QCD and to the Yukawa theory. However, the expressions simplify
considerably when we specialize to the low order Yukawa theory graphs of Fig. 2. There is only one flavor of struck
parton, so we may drop the sums over flavor indices. Also, there is only one particle flavor that can appear in the
final state, namely the quark. So B = q and we may drop the sum over B. The TMD FF has the trivial form in the
current region of the W -term,

D(zh, zhkT;µ) = �(1� zh)�
(2)(zhkT) . (70)

Therefore, we may integrate the cross section over zN to evaluate the �-function at zN = 1. The cross section we will
consider, therefore, is actually

Z
dzN

d�SIDIS

dxbj dy d dzN d2PBT

, (71)

with zN approximated by zh in Eq. (70), as usual in a leading power approximation. (The Y term comes with an
analogous �-function in the collinear FF that fixes the value of zN.) Once Eq. (70) is substituted into the second
line of Eq. (63), two transverse momentum �-functions remain. Therefore, we may evaluate both the k1T and k2T

integrals and the delta functions fix k2T = 0 and k1T = �qT = PBT. Finally, for the low order graphs considered
here,

Pµ⌫
1

Hij(µ/Q;µ)µ⌫ ! Pµ⌫
1

Hµ⌫ = H1 =
1

2
,

Pµ⌫
2

Hij(µ/Q;µ)µ⌫ ! Pµ⌫
2

Hµ⌫ = H2 = xbj . (72)

Therefore, Eq. (63) is

W
µ⌫(xbj, Q,kT) = H

µ⌫
fq/p(xbj,kT;µ) + Y

µ⌫ +O

✓
m

2

Q2

◆

= H
µ⌫

Z
d2bT

(2⇡)2
e
ikT·bT f̃q/p(xbj, bT;µ) + Y

µ⌫ +O

✓
m

2

Q2

◆
. (73)

Or,

F1(xbj, Q,kT) =
1

2
fq/p(xbj,kT;µ) + Y1 +O

✓
m

2

Q2

◆
=

1

2

Z
d2bT

(2⇡)2
e
ikT·bT f̃q/p(xbj, bT;µ) + Y1 +O

✓
m

2

Q2

◆
, (74)

F2(xbj, Q,kT) = xbjfq/p(xbj,kT;µ) + Y2 +O

✓
m

2

Q2

◆
= xbj

Z
d2bT

(2⇡)2
e
ikT·bT f̃q/p(xbj, bT;µ) + Y2 +O

✓
m

2

Q2

◆
. (75)

We have used the shorthand kT = PBT = k1T to simplify notation. The absence of a zN argument on the left sides
of Eqs. (73)–(74) indicates that these are the TMD observables after the zN-integral in Eq. (71). That is, it is the
integral

R
dzN /(4zN) of the SIDIS hadronic tensor.

Is also useful to work other standard linear combinations of the two structure functions F1 and F2 like the longitu-
dinal unpolarized structure function FL defined below

FL(xbj,kT, Q) ⌘

 
1 +

4m2
px

2

bj

Q2

!
F2(xbj,kT, Q)� 2xbjF1(xbj,kT, Q). (76)

16
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Therefore, we may integrate the cross section over zN to evaluate the �-function at zN = 1. The cross section we will
consider, therefore, is actually

Z
dzN

d�SIDIS

dxbj dy d dzN d2PBT

, (71)

with zN approximated by zh in Eq. (70), as usual in a leading power approximation. (The Y term comes with an
analogous �-function in the collinear FF that fixes the value of zN.) Once Eq. (70) is substituted into the second
line of Eq. (63), two transverse momentum �-functions remain. Therefore, we may evaluate both the k1T and k2T

integrals and the delta functions fix k2T = 0 and k1T = �qT = PBT. Finally, for the low order graphs considered
here,

Pµ⌫
1

Hij(µ/Q;µ)µ⌫ ! Pµ⌫
1

Hµ⌫ = H1 =
1

2
,

Pµ⌫
2

Hij(µ/Q;µ)µ⌫ ! Pµ⌫
2

Hµ⌫ = H2 = xbj . (72)

Therefore, Eq. (63) is

W
µ⌫(xbj, Q,kT) = H
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µ⌫ +O
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. (73)

Or,

F1(xbj, Q,kT) =
1

2
fq/p(xbj,kT;µ) + Y1 +O
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, (74)

F2(xbj, Q,kT) = xbjfq/p(xbj,kT;µ) + Y2 +O
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= xbj

Z
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ikT·bT f̃q/p(xbj, bT;µ) + Y2 +O
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m
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◆
. (75)

We have used the shorthand kT = PBT = k1T to simplify notation. The absence of a zN argument on the left sides
of Eqs. (73)–(74) indicates that these are the TMD observables after the zN-integral in Eq. (71). That is, it is the
integral

R
dzN /(4zN) of the SIDIS hadronic tensor.

Is also useful to work other standard linear combinations of the two structure functions F1 and F2 like the longitu-
dinal unpolarized structure function FL defined below

FL(xbj,kT, Q) ⌘

 
1 +

4m2
px

2

bj

Q2

!
F2(xbj,kT, Q)� 2xbjF1(xbj,kT, Q). (76)
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FIG. 6: The TMD structure functions F1(xbj, kT, Q), F2(xbj, kT, Q) and their linear combination FL(xbj, kT, Q) as
defined in equation Eq. (76) are shown for a specific value of xbj = 0.65. The dotted yellow and green curves show
the contributions of the W and Y terms, respectively, while their sum (dashed blue curve), defined in Eq. (74) and
Eq. (75), approximates the unfactorized (solid red) curve. The dashed grey line indicates the maximum kT that is
kinematically allowed in the exact theory. The choice of the masses is still mp = ms = 1 GeV and mq = 0.3 GeV
with a hard scale of Q = 20 GeV.

where the “??” on the equal sign is to emphasize that this is a type of conjectured approximation. This makes
manipulating integrals of TMD functions very simple. Equation (63) for a specific structure function is

F1,2(xbj, Q, zh,PBT) =
X

ij

bF ij
1,2

Z
d2k1T d2k2T fi/p(xbj,k1T)DB/j(zh, zhk2T)�

(2)(qT + k1T � k2T) , (85)

where bF ij
1,2 is the result of projecting with Eq. (12) on H

µ⌫ . (Since Eq. (85) is a simplified parton model version of
the factorization theorem, we have dropped dependence on auxiliary variables like µ in the pdf and ↵.) Integrating

Q = 20 GeV
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Important large-kT contributions
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Now the integral over kT is well-behaved in both the UV and IR limits, confirming that no lower cuto↵ was needed,
so we have removed the kcut from Eq. (58). Equation (50) accounts for the zeroth order contribution to the hard
partonic structure function while Eq. (58) accounts for the first O(a�) contribution. Both must be present in order
to have complete factorization with only power suppressed and O

�
a
2

�

�
errors.

D. Fully factorized result

Combining Eq. (50) and Eq. (58) gives all of the leading terms in Eq. (48), and evaluating the integrals explicitly
gives

F1(xbj, Q) =
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Equation (59) can be written in a more explicitly factorized way, with
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. (60)

The second line is now the (subtracted) hard partonic structure function through O(a�), and the third line is the pdf
through O(a�).

Equation (60) is the factorization of Fig. 2 in the form of Eq. (39) that we sought. It is an approximation whose
accuracy increases as m/Q ! 0. More general treatments of factorization show that the pattern continues to all
orders in a�.

Several well-known features of factorization are recognizable in Eq. (60). First, the hard factor F̂1,q/i on the second
line is a partonic DIS structure function, it is process-specific, and it depends on the process-specific kinematical
variable Q. However, it is independent of any of the small mass scales like mq, ms or mp that govern intrinsic
structure over large spacetime scales. Conversely, the pdf fi/p on the third line does depend on intrinsic scales, but
it is universal in that it follows directly (Eq. (22) and Eq. (23)) from the operator definition in Eq. (19). Second,
the logarithmic dependence on µ cancels between the second and third lines through order a�(µ), demonstrating
the renormalization group independence. Any residual µ dependence is in the O

�
a�(µ)2

�
running of parameters like

a�(µ), but this too would vanish with higher orders.
In an asymptotically free theory like QCD, the goal would be to ensure that higher order terms in the perturbative

expansion of the hard part remain small or finite as Q ! 1. Thus, logarithms like those in F̂1,q/i(xbj/⇠, µ/Q; a�(µ))
need to be kept under control by choosing to set µ / Q. With such a choice, all Q-dependence in the hard part resides
in the running of the coupling, which vanishes in the DIS limit. In the non-asymptotically free Yukawa toy theory

HARD structure function

Parton distribution function



14

Unpolarized structure 
functions

14

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
10

-3

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12
10

-3

(a) (b)

FIG. 4: The same curves as in Fig. 3, but now with the factorized expressions for F1 and F2 from Eq. (60) and
Eq. (61) also shown as the dot-dashed curves. The vertical dashed curves are the kinematical maximum (Eq. (A25))
corresponding to each value of Q.

that we are using here, there are fewer advantages to doing this, but the steps nevertheless very clearly illustrate the
procedure. Thus, we are generally interested in the pdf defined with its scale of order Q, fq/p(⇠;Q).

The steps above apply in the same way to the F2 structure function, giving
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It is worth verifying graphically and numerically that the factorized expressions for F1 and F2 match the unapproxi-
mated calculations of the graphs in Fig. 2 when m/Q approaches zero. This is illustrated in Fig. 4. The solid curves
are the same as those in Fig. 3, but now overlaid on top are the calculations with factorization, obtained from Eq. (60)
and Eq. (61), shown as dot-dashed lines. As expected, the unapproximated and factorized calculations agree as Q

increases above ⇡ 1 GeV. If we ignore the running of a�(µ), as we will in all plots here, then F1 and F2 are exactly
independent of the numerical value used for µ, though the relative contribution from each factor in Eq. (60) and
Eq. (61) changes with µ. This is illustrated in Fig. 5. Note that while the value of µ is arbitrary, certain choices
minimize or maximize the contribution from bF1,2. For instance, when µ is chosen to be equal to the hard scale Q = 20
GeV (dashed green curves) we recover the naive parton model prediction in the low xbj region. On the other hand,
the non trivial partonic contribution is dominant when the renormalization scale is chosen to be of the order of the
non-perturbative mass scales of the model (dotted yellow curves). In fact, from Eq. (23) we see that there exists a
functional form of µ ⇠ O(m) that makes the non trivial pdf contribution vanish, namely

µ(⇠)2 = �(⇠)2e
1� �(⇠)2

�(⇠)2 . (62)

mhadron = mspectator = 1.0 GeV
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FIG. 6: The TMD structure functions F1(xbj, kT, Q), F2(xbj, kT, Q) and their linear combination FL(xbj, kT, Q) as
defined in equation Eq. (76) are shown for a specific value of xbj = 0.65. The dotted yellow and green curves show
the contributions of the W and Y terms, respectively, while their sum (dashed blue curve), defined in Eq. (74) and
Eq. (75), approximates the unfactorized (solid red) curve. The dashed grey line indicates the maximum kT that is
kinematically allowed in the exact theory. The choice of the masses is still mp = ms = 1 GeV and mq = 0.3 GeV
with a hard scale of Q = 20 GeV.

where the “??” on the equal sign is to emphasize that this is a type of conjectured approximation. This makes
manipulating integrals of TMD functions very simple. Equation (63) for a specific structure function is

F1,2(xbj, Q, zh,PBT) =
X

ij

bF ij
1,2

Z
d2k1T d2k2T fi/p(xbj,k1T)DB/j(zh, zhk2T)�

(2)(qT + k1T � k2T) , (85)

where bF ij
1,2 is the result of projecting with Eq. (12) on H

µ⌫ . (Since Eq. (85) is a simplified parton model version of
the factorization theorem, we have dropped dependence on auxiliary variables like µ in the pdf and ↵.) Integrating

• Only use TMD pdfs and ffs:

• Integrate over transverse momentum
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as in Eq. (84) and evaluating the �-functions gives

F1,2(xbj, Q
2)

??
=

1

4

X

ij

bF ij
1,2

✓Z
d2k1T fi/p(xbj,k1T)

◆✓Z
dzh

Z
d2k2T zhDB/j(zh, zhk2T)

◆
, (86)

where we have used zN ⇡ zh. Then, using the parton model relations
Z

d2k1T fi/p(xbj,k1T)
??
= fi/p(xbj) (87)

Z
dzh

Z
d2k2T zhDB/j(zh, zhk2T)

??
= 1 (88)

gives the naive parton model expectation,

F1,2(xbj, Q
2)

??
=

1

4

X

ij

bF ij
1,2 fi/p(xbj) . (89)

See Eqs.(59)-(60) of [16] for an example of an application of the approximations in Eqs. (84)–(89). The question marks
over the equal signs in Eqs. (87)–(88) are a reminder that in theories that require renormalization, like QCD and the
Yukawa theory, the integrals are UV divergent. The equalities are only strictly valid in a literal probability interpreta-
tion for the pdf and ↵. The appearance of UV divergences is an artifact of integrating transverse momentum outside
the region where the small transverse momentum approximations hold. In other words, they come from neglecting the
Y-term. Because they track with expectations from a naive parton model, but extended to TMD functions, the set
of approximations conjectured in Eqs. (84)–(89) are sometimes called the generalized parton model [17, 18] (GPM).
It continues to be quite common for them to be used in applications to hadron structure phenomenology [19].

One may examine the typical size of the e↵ect of the GPM approximation in the special case of the Yukawa theory
of Sec. III by using the above results of this section. Then, Eq. (84) is simply what is obtained from the W-term
when integrating Eqs. (74)–(75) over all kinematically accessible transverse momentum to get the full integrated cross
section. Doing this integral gives

F1,2(xbj, Q;µ) = F
W
1,2(xbj, Q;µ) + F

Y
1,2(xbj, Q;µ) +O

✓
m

2

Q2

◆
. (90)

where

F
W
1,2(xbj, Q;µ) ⌘ H1,2f

c(xbj;µ; kc = km) , (91)

F
Y
1,2(xbj, Q;µ) ⌘ ⇡

Z k2
m

0

dk
2

1T
Y1,2 . (92)

Equation (91) is just Eq. (89) specialized to the Yukawa theory example and using the cuto↵ definition of the collinear
pdf from Eq. (34). The full collinear factorization result in Eqs. (60)–(61) is the result of dropping the power-suppressed
terms in Eq. (90),

F
Full Fact.

1,2 (xbj, Q;µ) = F
W
1,2(xbj, Q;µ) + F

Y
1,2(xbj, Q;µ) , (93)

while the GPM approximation of Eq. (84) is obtained if we drop both the O

⇣
m2

Q2

⌘
and the Y-term F

Y
1,2(xbj, Q;µ),

F
GPM

1,2 (xbj, Q;µ) = F
W
1,2(xbj, Q;µ) , (94)

The validity of the GPM, as compared with with full factorization, can be tested by looking at the relative contributions
from F

W
1,2(xbj, Q;µ), F

Y
1,2(xbj, Q;µ), and F1,2. Examples, are shown in Fig. 7 and Fig. 8.

The statement that the W term yields the most contribution would imply its ratio with the unfactorized expression
to be in the neighborhood of 1 independently of xbj for su�ciently large Q. In our examples in Fig. 7, where the
hard scale has already been fixed to a value much larger than the other non-perturbative mass scales, only the sum
of both W and Y terms well approximates the unfactorized structure functions while the small transverse momentum
contribution is very rapidly dominated by its large transverse momentum counterpart already at xbj ⇠ 0.5 for F1

and even earlier for F2. Similarly, in Fig. 8, the relative contributions for fixed xbj over an extended range of Q are
shown to satisfy the factorization statement only when both of them are accounted for. In fact, for relatively small xbj

the small transverse momentum contribution is still a relatively good approximation to the full unapproximated F1,
although less so for F2, which already su↵ers from the neglected Y term contribution, as it is evident in the example
with xbj = 0.3 even at extremely large hard scales. However, for increasingly larger xbj the situation degrades even
more rapidly and only the correct prescription is able to approximate the unfactorized expressions.
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1,2(xbj, Q;µ), and F1,2. Examples, are shown in Fig. 7 and Fig. 8.

The statement that the W term yields the most contribution would imply its ratio with the unfactorized expression
to be in the neighborhood of 1 independently of xbj for su�ciently large Q. In our examples in Fig. 7, where the
hard scale has already been fixed to a value much larger than the other non-perturbative mass scales, only the sum
of both W and Y terms well approximates the unfactorized structure functions while the small transverse momentum
contribution is very rapidly dominated by its large transverse momentum counterpart already at xbj ⇠ 0.5 for F1

and even earlier for F2. Similarly, in Fig. 8, the relative contributions for fixed xbj over an extended range of Q are
shown to satisfy the factorization statement only when both of them are accounted for. In fact, for relatively small xbj

the small transverse momentum contribution is still a relatively good approximation to the full unapproximated F1,
although less so for F2, which already su↵ers from the neglected Y term contribution, as it is evident in the example
with xbj = 0.3 even at extremely large hard scales. However, for increasingly larger xbj the situation degrades even
more rapidly and only the correct prescription is able to approximate the unfactorized expressions.
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FIG. 7: Comparison between small and large transverse momentum contributions to the collinear structure
functions F1 and F2. The ratios of the W and Y terms against the unfactorized structure functions F1 and F2 are
shown for two values of the hard scale Q = 20 GeV and Q = 200 GeV. The dashed lines show the better
approximation given by their sum for both F1 (dashed red) and F2 (dashed blue).

VII. THE INPUT SCALE Q0

The steps required to construct both the collinear and TMD factorization expressions in the previous two sections
relied on expansions in m

2
/Q

2, so the factorized expressions are useful approximations only when Q is su�ciently large
compared with intrinsic mass scales. Below some value, the justification for any truncation in powers of m/Q fails.
Therefore, applications of factorization generally require one to specify a (possibly xbj-dependent) minimum Q = Q0

below which the expansion is no longer trusted. Typically, one tries to choose Q0 to be as small as can be reasonably
justified so as to maximally exploit factorization techniques over the widest possible kinematical range. Sometimes,
this is achieved by including parametrizations of subleading power behavior [20, 21]. In standard treatments of DIS,
a typical Q0 is usually between approximately 1 and 4 GeVs.

The sample curves from the Yukawa theory shown in Fig. 4 demonstrate the limited validity of the factorization
method as Q decreases. With the values of mq, ms, and mp chosen in those figures, the choice of Q0 should be no
smaller than around 1 GeV, although for small xbj is appears to be possible to push Q0 lower.3

Notice that it is the only size of the external kinematical variables Q and xbj relative to the intrinsic that determines
the level of agreement between the unfactorized and factorized expressions. If we neglect the running of the parameters,
then there is no dependence at all upon the auxiliary parameters µ (see Eq. (59) and Fig. 5). In QCD, that arbitrariness
in the choice of renormalization scale is exploited to minimize the size of higher order errors.

One way to introduce an extra adjustable parameter in a way that might allow the factorized expression to be
improved along the lines of [20, 21], for at least some regions of kinematics, is to switch out the MS renormalized
definition for the pdf with the cuto↵ definition in Eq. (34). The new parameter this introduces is the cuto↵ scale
kc, and one may attempt to adjust this to extend agreement between the factorized and unfactorized expressions to
smaller Q.

For a generic unfactorized structure function F , the percent errors introduced by factorization are

�F
MS

⌘

�����
F � F

MS

F

����� · 100, �F
c
⌘

����
F � F

c

F

���� · 100 , (95)

where the c and MS superscripts indicate if it is the MS or the cuto↵ definitions of the collinear pdfs that are used in
the calculation. While kc ⇡ µ is the natural choice in the latter case, the size of �F

c depends on the exact value of

3 The reason is that the errors in the power expansion go like xbjm2/Q2 at small xbj, at least for these low order graphs.

Large transverse momentum is important
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Notice that,

f̃
Evol

q/p (xbj, bT;Q) = fq/p(xbj;µb⇤) exp
�
�gq/p(xbj, bT)

 
+O

�
a
2

�, m
2
b
2

max

�
, (113)

If we restrict consideration to the graphs in Fig. 2, as we do throughout this paper, then f̃
Evol

q/p (xbj, bT;Q) is just

fq/p(xbj;µb⇤) exp
�
�gq/p(xbj, bT)

 
. We will use this approximation in all figures below.

Transforming the W terms in the Yukawa theory example of Eqs. (74)–(75) into coordinate space allows them to
be reexpressed in terms of f̃

Evol

q/p (xbj, bT;Q),

F̃1(xbj, Q, bT) =
1

2
f̃q/p(xbj, bT;Q) + Ỹ1 +O

✓
m

2

Q2

◆
=

1

2
f̃

Evol

q/p (xbj, bT;Q) + Ỹ1 +O

✓
m

2

Q2

◆
, (114)

F̃2(xbj, Q,kT) = xbjf̃q/p(xbj, bT;Q) + Ỹ2 +O

✓
m

2

Q2

◆
= xbjf̃

Evol

q/p (xbj, bT;Q) + Ỹ2 +O

✓
m

2

Q2

◆
. (115)

Restricting to the graphs in Fig. 2, we may example the e↵ect of a a non-zero bmax. Figure 12 compares
f̃

Evol

q/p (xbj, bT;Q) for several values of bmax with the original unapproximated f̃q/p(⇠, bT;µ) of Eq. (98). The devi-

ation of the f̃
Evol

q/p (xbj, bT;Q) curves from the unapproximated curve is a measure of the error induced by neglecting

the O
�
m

2
b
2

T

�
terms in Eq. (110). For bmax . 0.25 GeV�1, the curves are no longer distinguishable by eye. Thus,

for the set of mass parameters we have chosen for the Yukawa theory, we may identify bT ⇡ 0.25 GeV�1 as the
maximum bmax that is acceptable in order to approximate f̃q/p(xbj, bT;Q) by f̃

Evol

q/p (xbj, bT;Q), and to successfully
sequester small-bT from large-bT contributions. Figure 12 also shows that once bmax is made acceptably small, the
bmax-dependence in f̃

Evol

q/p (xbj, bT;Q) vanishes:

d

dbmax

f̃
Evol

q/p (xbj, bT;Q) ! 0 . (116)

When bmax is small, changing it amounts to simply transferring m-independent contributions between the first (OPE)
factor and the second (“nonperturbaive” e

�g) factor in Eq. (106). A significant bmax-dependence indicates either that
bmax is too large or that the model of gq/p(xbj, bT) is not complete in the small bT region.

While the steps above are not helpful for calculating in the specific case of the Yukawa theory, they are nonetheless
very useful for illustrating how the procedure works. Equation (111) with Eqs. (114)–(115) is analogous to the way
cross sections in QCD are often expressed when one uses the CSS or similar formalisms in bT-space. As just emphasized,
the b⇤ strategy for isolating m-dependent (“nonperturbative”) and massless OPE (“perturbative”) contributions in
the two separate factors of Eq. (104) is only reliable if bmax is chosen small enough that it is justfiable to neglect the
O
�
m

2
b
2

T

�
terms in Eq. (110).

In QCD, the functions that correspond to gq/p(xbj, bT) contain information about the large distance physics, so they
are nonperturbative. In phenomenology, the usual strategy is to replace them with ansatz parametrizations that are
fit to experimental data.4 In the Yukawa theory example, we know the explicit expression for gq/p(xbj, bT) through
Eq. (98) and Eq. (105), so it is possible to directly examine the e↵ect of replacing it with an ansatz approximation.
Typical parametrizations of gq/p(xbj, bT) are linear or quadratic in bT:

gq/p(xbj, bT) ⇡ g1bT or gq/p(xbj, bT) ⇡ g1b
2

T
. (117)

In the Yukawa theory, one expects correlation functions to vary roughly like ⇠ e
�mbT/bT over large distances, and

this is reflected in the approximately linear behavior of gq/p(xbj, bT) at large bT. To ensure that the “perturbative”
and “nonperturbative” contributions are completely separated, we use bmax = 0.25 GeV�1 in accordance with the
observations of Fig. 12. The plots in Fig. 12 show the bT-space TMD pdfs calculated as in Eq. (111) with the linear
(plot a) and quadratic (plot b) ansatzes for gq/p(xbj, bT). The same curves are shown Fig. 15 after the transformation
back to transverse momentum space produces.

With an appropriately chosen g1, the linear ansatz can be made to give reasonable agreement with the true
gq/p(xbj, bT) over a wide range of bT, but it produces significant errors in the tail region in transverse momentum
space. The quadratic ansatz can also be made to reproduce the qualitative behavior at large qT, but overall it performs

4 Although there are rapidly improving lattice based methods for calculating them.
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space. The quadratic ansatz can also be made to reproduce the qualitative behavior at large qT, but overall it performs

4 Although there are rapidly improving lattice based methods for calculating them.

• Operator product expansion
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FIG. 9: The factorized structure function F1 is shown in its MS (dotted yellow) and cuto↵ (dotted green) versions
compared against its unfactorized (solid red) expression. The two figures show two di↵erent choices of the cuto↵
kc = 2.5 GeV (a) and kc = 7.5 GeV (b). Here the masses have been chosen to be mp = 1 GeV, ms = 2 GeV and
mq = 0.3 GeV with a hard scale Q = 2.5 GeV.

VIII. WORKING IN TRANSVERSE COORDINATE SPACE

To further extend the analogy with TMD factorization as it is used in QCD, we now consider the W -terms in
Eqs. (74)–(75), but in transverse coordinate space,

F
W
1

(xbj, Q, qT) =
1

2

Z
d2bT

(2⇡)2
e
�iqT·bT f̃q/p(xbj, bT;µ) ,

F
W
2

(xbj, Q, qT) = xbj

Z
d2bT

(2⇡)2
e
�iqT·bT f̃q/p(xbj, bT;µ) . (97)

In the low order Yukawa theory, we can write down the explicit transverse coordinate space version of the quark TMD
pdf in terms of Bessel functions. It is

f̃q/p(⇠, bT;µ) = 2a�(µ)(1� ⇠)

Z
dkT kT

k
2

T
+ �

2(⇠)

[k2

T
+�(⇠)2]

2
J0(bTkT)

= 2a�(µ)(1� ⇠)

(
K0 (bT�(⇠))�

bT

⇥
�(⇠)2 � �(⇠)2

⇤

2�(⇠)
K1 (bT�(⇠))

)
. (98)

A sample of the bT-space TMD pdfs is shown in Fig. 10 for several values of the momentum fraction ⇠. Masses here??

The coordinate space TMD pdf satisfies an operator product expansion (OPE) in the limit of small bT,

f̃q/p(xbj, bT;µ) =
X

j

Z
1

xbj

d⇠

⇠
C̃q/j(xbj/⇠, bT;µ)f̃j/p(⇠;µ) +O

�
m

2
b
2

T

�
, (99)

with

C̃q/j(x̂, bT;µ) = �(1� x̂)�jq � a�(µ)(1� x̂) ln

✓
µ

2
b
2

T
e
2�E

4

◆
�jp + · · · . (100)
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FIG. 10: The coordinate space quark TMD pdf for several values of momentum fraction ⇠. Mass scales are
mq = 0.3 GeV, mp = 1.0 GeV and ms = 1.5 GeV.

There is a term for Cq/s as well, but it does not contribute at the order of graphs in Fig. 2, so we do not write it here
explicitly. See Appendix C for a discussion of these formulas. Thus,

f̃q/p(xbj, bT;µ) = fq/p(xbj;µ)� a�(µ)(1� xbj) ln

✓
µ

2
b
2

T
e
2�E

4

◆
+ · · ·+O

�
m

2
b
2

T

�
,

= f̃
OPE

q/p (xbj, bT;µ) +O
�
m

2
b
2

T

�
. (101)

where fq/p(xbj;µ) is the O(a�(µ)) quark-in-hadron collinear pdf from Eq. (23) and the second term uses Eq. (20).

We will call the approximation wherein the O
�
m

2
b
2

T

�
terms in Eq. (101) are dropped f̃

OPE

q/p (xbj, bT;µ). Figure 11

compares the OPE approximation with the unapproximated calculation in Eq. (98), and confirms that the two agree
in the small bT limit where the O

�
m

2
b
2

T

�
contributions are negligible. In the bT ! 1 IR limit, the OPE calculation

has a (negative) divergence.
In QCD versions of this, one is motivated to isolate the contributions from the small bT region, which is insensitive

to soft, large-distance mass scales, from the m-dependent large bT contributions. Then the small bT part can be
calculated perturbatively in QCD using the OPE and collinear factorization. If the remaining large bT contribution is
sequestered from the perturbative part, it can be treated as a universal nonperturbative contribution and parametrized
phenomenologically.

A standard scheme [22] for separating out the m-dependent portion of the TMD pdf (what would be the nonper-
turbative part in QCD) is the “b⇤-method.” There, one demarcates the regions of large and small bT by replacing bT

with a di↵erent transverse coordinate variable b⇤ with the property that

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

, (102)

where bmax is a transverse size that is chosen to demarcate the boundary between what are considered large and small
transverse coordinate regions. The most commonly used functional form is

b⇤(bT) =
bTp

1 + b
2

T
/b2

max

. (103)

The only requirement on bmax is that it should be small enough that bT . bmax contributions to the W term are small
enough that the O

�
m

2
b
2

T

�
in Eq. (101) are negligible. Since the evolution factor in Eq. (33) is bT-independent, we
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FIG. 11: The unfactorized coordinate space quark TMD pdf and f̃
OPE

q/p (xbj, bT;µ). Mass scales are mq = 0.3 GeV,
mp = 1.0 GeV and ms = 1.5 GeV.

can write

f̃q/p(xbj, bT;µ) = f̃q/p(xbj, b⇤;µ)
f̃q/p(xbj, bT;µ)

f̃q/p(xbj, b⇤;µ)
= f̃q/p(xbj, b⇤;µ) exp{�gq/p(xbj, bT)} , (104)

and the function we have defined as

gq/p(xbj, bT) ⌘ � ln

 
f̃q/p(xbj, bT;µ)

f̃q/p(xbj, b⇤;µ)

!
. (105)

will be exactly scale-independent because the µ-dependence is an overall bT-independent factor. Equation (98) sub-
stituted in Eq. (105) gives the explicit gq/p(xbj, bT) for the Yukawa theory example. Note carefully that gq/p(xbj, bT)
depends on the detailed choice of b⇤ and the value of bmax.

If bmax is small compared to ⇠ 1/m, then we can use the OPE approximation and write

f̃q/p(xbj, bT;µ) = f̃
OPE

q/p (xbj, b⇤;µ) exp{�gq/p(xbj, bT)}+O
�
m

2
b
2

max

�
, (106)

and, if bmax is small enough, we can just drop the O
�
m

2
b
2
max

�
errors.

In applications to QCD at high energies, it is often the hope is that the expressions analogous to Eq. (106) can be
used to exploit the OPE part f̃

OPE

q/p (xbj, b⇤;µ) for the widest possible range of bT, thereby minimizing the importance of

the m-dependent gq/p(xbj, bT) functions and maximally exploiting the predictive power in collinear pdfs and collinear
factorization alone. Thus, one chooses bmax to be as large as possible while still guaranteeing that it is reasonably
justified to drop the powers of mbmax in Eq. (106). In earlier sections, we defined Q0 to be the scale below which it
is no longer justified to neglect powers of m/Q0, so we

bmax ⇡ 1/Q0 . (107)

In analogous situations in QCD, the strategy would be to minimize contributions from higher orders in the OPE of
Eq. (100) as bT ! 0 in the f̃q/p(xbj, b⇤;µ) factor of Eq. (104), so that f̃

OPE

q/p (xbj, b⇤;µ) ⇡ fq/p(xbj;µ) up to a fixed

number of calculable higher orders. To this end, one chooses the scale µ to be order 1/b⇤. Let us thus define,

µb⇤ = b0/b⇤ , (108)
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FIG. 12: The unfactorized coordinate space quark TMD pdf and the coordinate space quark TMD pdf
f̃

Evol

q/p (xbj, bT;Q) for several values of bmax. The mass scales are (a) mq = 0.3 GeV, mp = 1.0 GeV and

ms = 1.0 GeV (b) mq = 0.3 GeV, mp = 1.0 GeV and ms = 1.5 GeV.

where b0 ⌘ 2e��E . Using µb⇤ in Eq. (100) eliminates the logarithmic term in Eq. (101) (or, rather, moves it into the
collinear pdf). In QCD factorization, however, calculations of the overall cross sections require µ ⇠ Q. Therefore,
there are two steps to the scale-setting. In the Yukawa theory example, we first apply the TMD evolution equation
(Eqs. (30)–(33)) and write

f̃q/p(xbj, b⇤;µ) = f̃q/p(xbj, b⇤;µb⇤) exp

(
�2

Z µ

µb⇤

dµ
0

µ0 �2(a�(µ
0))

)
, (109)

to relate a generic scale µ to the choice µ = µb⇤ . Then, substituting Eq. (109) into Eq. (104), repeating the step of
approximating with the OPE, and finally setting µ = Q gives

f̃q/p(xbj, bT;Q) = f̃q/p(xbj, b⇤;µb⇤) exp

(
�2

Z Q

µb⇤

dµ

µ
�2(a�(µ))� gq/p(xbj, bT)

)

= f̃
OPE

q/p (xbj, b⇤;µb⇤) exp

(
�2

Z Q

µb⇤

dµ

µ
�2(a�(µ))� gq/p(xbj, bT)

)
+O

�
m

2
b
2

max

�
. (110)

From its definition in Eq. (105), gq/p(xbj, bT) vanishes like a power of b
2

T
as bT ! 0. Therefore, it mainly a↵ects

the low transverse momentum behavior. Dropping the errors on the second line of Eq. (110) gives an approximation
reminiscent to what is done in QCD,

f̃
Evol

q/p (xbj, bT;Q) ⌘ f̃
OPE

q/p (xbj, b⇤;µb⇤) exp

(
�2

Z Q

µb⇤

dµ

µ
�2(a�(µ))� gq/p(xbj, bT)

)
. (111)

The “Evol” superscript here marks this as another approximation to the exact operator definition of the TMD pdf in
Eq. (27). It indicates that this is the “evolved” bT-space TMD pdf after the OPE is applied and the error terms in
Eq. (110) are dropped. Compare this form of the TMD pdf to Eq. (33) of Ref. [23]. Thus,

f̃q/p(xbj, bT;Q) = f̃
Evol

q/p (xbj, bT;Q) +O
�
m

2
b
2

max

�
. (112)

Hence, the standard separation into an OPE and an exponential of g-functions is accurate in the limit that the
arbitrary bmax is chosen to be very small.

Notice that,

f̃
Evol

q/p (xbj, bT;Q) = fq/p(xbj;µb⇤) exp
�
�gq/p(xbj, bT)

 
+O

�
a
2

�, m
2
b
2

max

�
, (113)

Separating large and small transverse 
coordinates
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• The b* method

• Use the OPE
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FIG. 10: The coordinate space quark TMD pdf for several values of momentum fraction ⇠. Mass scales are
mq = 0.3 GeV, mp = 1.0 GeV and ms = 1.5 GeV.

with

C̃q/j(x̂, bT;µ) = �(1� x̂)�jq � a�(µ)(1� x̂) ln
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◆
�jp + · · · . (100)

There is a term for Cq/s as well, but it does not contribute at the order of graphs in Fig. 2, so we do not write it here
explicitly. See Appendix C for a discussion of these formulas. Thus,

f̃q/p(xbj, bT;µ) = fq/p(xbj;µ)� a�(µ)(1� xbj) ln

✓
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2

T
e
2�E

4

◆
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,

= f̃
OPE
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�
. (101)

where fq/p(xbj;µ) is the O(a�(µ)) quark-in-hadron collinear pdf from Eq. (23) and the second term uses Eq. (20).

We will call the approximation wherein the O
�
m

2
b
2

T

�
terms in Eq. (101) are dropped f̃

OPE

q/p (xbj, bT;µ). Figure 11

compares the OPE approximation with the unapproximated calculation in Eq. (98), and confirms that the two agree
in the small bT limit where the O

�
m

2
b
2

T

�
contributions are negligible. In the bT ! 1 IR limit, the OPE calculation

has a (negative) divergence.
In QCD versions of this, one is motivated to isolate the contributions from the small bT region, which is insensitive

to soft, large-distance mass scales, from the m-dependent large bT contributions. Then the small bT part can be
calculated perturbatively in QCD using the OPE and collinear factorization. If the remaining large bT contribution is
sequestered from the perturbative part, it can be treated as a universal nonperturbative contribution and parametrized
phenomenologically.

A standard scheme [22] for separating out the m-dependent portion of the TMD pdf (what would be the nonper-
turbative part in QCD) is the “b⇤-method.” There, one demarcates the regions of large and small bT by replacing bT

with a di↵erent transverse coordinate variable b⇤ with the property that

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

, (102)

where bmax is a transverse size that is chosen to demarcate the boundary between what are considered large and small
transverse coordinate regions. The most commonly used functional form is

b⇤(bT) =
bTp

1 + b
2

T
/b2

max

. (103)
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FIG. 11: The unfactorized coordinate space quark TMD pdf and f̃
OPE

q/p (xbj, bT;µ). Mass scales are mq = 0.3 GeV,
mp = 1.0 GeV and ms = 1.5 GeV.

The only requirement on bmax is that it should be small enough that bT . bmax contributions to the W term are small
enough that the O

�
m

2
b
2

T

�
in Eq. (101) are negligible. Since the evolution factor in Eq. (33) is bT-independent, we

can write

f̃q/p(xbj, bT;µ) = f̃q/p(xbj, b⇤;µ)
f̃q/p(xbj, bT;µ)

f̃q/p(xbj, b⇤;µ)
= f̃q/p(xbj, b⇤;µ) exp{�gq/p(xbj, bT)} , (104)

and the function we have defined as

gq/p(xbj, bT) ⌘ � ln

 
f̃q/p(xbj, bT;µ)

f̃q/p(xbj, b⇤;µ)

!
. (105)

will be exactly scale-independent because the µ-dependence is an overall bT-independent factor. Equation (98) sub-
stituted in Eq. (105) gives the explicit gq/p(xbj, bT) for the Yukawa theory example. Note carefully that gq/p(xbj, bT)
depends on the detailed choice of b⇤ and the value of bmax.

If bmax is small compared to ⇠ 1/m, then we can use the OPE approximation and write

f̃q/p(xbj, bT;µ) = f̃
OPE

q/p (xbj, b⇤;µ) exp{�gq/p(xbj, bT)}+O
�
m

2
b
2

max

�
, (106)

and, if bmax is small enough, we can just drop the O
�
m

2
b
2
max

�
errors.

In applications to QCD at high energies, it is often the hope is that the expressions analogous to Eq. (106) can be
used to exploit the OPE part f̃

OPE

q/p (xbj, b⇤;µ) for the widest possible range of bT, thereby minimizing the importance of

the m-dependent gq/p(xbj, bT) functions and maximally exploiting the predictive power in collinear pdfs and collinear
factorization alone. Thus, one chooses bmax to be as large as possible while still guaranteeing that it is reasonably
justified to drop the powers of mbmax in Eq. (106). In earlier sections, we defined Q0 to be the scale below which it
is no longer justified to neglect powers of m/Q0, so we should set

bmax ⇡ 1/Q0 . (107)

In analogous situations in QCD, the strategy would be to minimize contributions from higher orders in the OPE of
Eq. (100) as bT ! 0 in the f̃q/p(xbj, b⇤;µ) factor of Eq. (104), so that f̃

OPE

q/p (xbj, b⇤;µ) ⇡ fq/p(xbj;µ) up to a fixed

number of calculable higher orders. To this end, one chooses the scale µ to be order 1/b⇤. Let us thus define,

µb⇤ = b0/b⇤ , (108)
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FIG. 11: The unfactorized coordinate space quark TMD pdf and f̃
OPE

q/p (xbj, bT;µ). Mass scales are mq = 0.3 GeV,
mp = 1.0 GeV and ms = 1.5 GeV.

The only requirement on bmax is that it should be small enough that bT . bmax contributions to the W term are small
enough that the O
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in Eq. (101) are negligible. Since the evolution factor in Eq. (33) is bT-independent, we

can write

f̃q/p(xbj, bT;µ) = f̃q/p(xbj, b⇤;µ)
f̃q/p(xbj, bT;µ)

f̃q/p(xbj, b⇤;µ)
= f̃q/p(xbj, b⇤;µ) exp{�gq/p(xbj, bT)} , (104)

and the function we have defined as

gq/p(xbj, bT) ⌘ � ln
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!
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will be exactly scale-independent because the µ-dependence is an overall bT-independent factor. Equation (98) sub-
stituted in Eq. (105) gives the explicit gq/p(xbj, bT) for the Yukawa theory example. Note carefully that gq/p(xbj, bT)
depends on the detailed choice of b⇤ and the value of bmax.

If bmax is small compared to ⇠ 1/m, then we can use the OPE approximation and write

f̃q/p(xbj, bT;µ) = f̃
OPE

q/p (xbj, b⇤;µ) exp{�gq/p(xbj, bT)}+O
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and, if bmax is small enough, we can just drop the O
�
m

2
b
2
max

�
errors.

In applications to QCD at high energies, it is often the hope is that the expressions analogous to Eq. (106) can be
used to exploit the OPE part f̃

OPE

q/p (xbj, b⇤;µ) for the widest possible range of bT, thereby minimizing the importance of

the m-dependent gq/p(xbj, bT) functions and maximally exploiting the predictive power in collinear pdfs and collinear
factorization alone. Thus, one chooses bmax to be as large as possible while still guaranteeing that it is reasonably
justified to drop the powers of mbmax in Eq. (106). In earlier sections, we defined Q0 to be the scale below which it
is no longer justified to neglect powers of m/Q0, so we should set

bmax ⇡ 1/Q0 . (107)

In analogous situations in QCD, the strategy would be to minimize contributions from higher orders in the OPE of
Eq. (100) as bT ! 0 in the f̃q/p(xbj, b⇤;µ) factor of Eq. (104), so that f̃

OPE

q/p (xbj, b⇤;µ) ⇡ fq/p(xbj;µ) up to a fixed

number of calculable higher orders. To this end, one chooses the scale µ to be order 1/b⇤. Let us thus define,

µb⇤ = b0/b⇤ , (108)
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FIG. 11: The unfactorized coordinate space quark TMD pdf and f̃
OPE

q/p (xbj, bT;µ). Mass scales are mq = 0.3 GeV,
mp = 1.0 GeV and ms = 1.5 GeV.

The only requirement on bmax is that it should be small enough that bT . bmax contributions to the W term are small
enough that the O

�
m

2
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T
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in Eq. (101) are negligible. Since the evolution factor in Eq. (33) is bT-independent, we

can write

f̃q/p(xbj, bT;µ) = f̃q/p(xbj, b⇤;µ)
f̃q/p(xbj, bT;µ)

f̃q/p(xbj, b⇤;µ)
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and the function we have defined as
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will be exactly scale-independent because the µ-dependence is an overall bT-independent factor. Equation (98) sub-
stituted in Eq. (105) gives the explicit gq/p(xbj, bT) for the Yukawa theory example. Note carefully that gq/p(xbj, bT)
depends on the detailed choice of b⇤ and the value of bmax.

If bmax is small compared to ⇠ 1/m, then we can use the OPE approximation and write

f̃q/p(xbj, bT;µ) = f̃
OPE
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and, if bmax is small enough, we can just drop the O
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�
errors.

In applications to QCD at high energies, it is often the hope is that the expressions analogous to Eq. (106) can be
used to exploit the OPE part f̃

OPE

q/p (xbj, b⇤;µ) for the widest possible range of bT, thereby minimizing the importance of

the m-dependent gq/p(xbj, bT) functions and maximally exploiting the predictive power in collinear pdfs and collinear
factorization alone. Thus, one chooses bmax to be as large as possible while still guaranteeing that it is reasonably
justified to drop the powers of mbmax in Eq. (106). In earlier sections, we defined Q0 to be the scale below which it
is no longer justified to neglect powers of m/Q0, so we should set

bmax ⇡ 1/Q0 . (107)

In analogous situations in QCD, the strategy would be to minimize contributions from higher orders in the OPE of
Eq. (100) as bT ! 0 in the f̃q/p(xbj, b⇤;µ) factor of Eq. (104), so that f̃

OPE

q/p (xbj, b⇤;µ) ⇡ fq/p(xbj;µ) up to a fixed

number of calculable higher orders. To this end, one chooses the scale µ to be order 1/b⇤. Let us thus define,

µb⇤ = b0/b⇤ , (108)
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FIG. 11: The unfactorized coordinate space quark TMD pdf and f̃
OPE

q/p (xbj, bT;µ). Mass scales are mq = 0.3 GeV,
mp = 1.0 GeV and ms = 1.5 GeV.

The only requirement on bmax is that it should be small enough that bT . bmax contributions to the W term are small
enough that the O
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in Eq. (101) are negligible. Since the evolution factor in Eq. (33) is bT-independent, we

can write

f̃q/p(xbj, bT;µ) = f̃q/p(xbj, b⇤;µ)
f̃q/p(xbj, bT;µ)

f̃q/p(xbj, b⇤;µ)
= f̃q/p(xbj, b⇤;µ) exp{�gq/p(xbj, bT)} , (104)

and the function we have defined as

gq/p(xbj, bT) ⌘ � ln
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will be exactly scale-independent because the µ-dependence is an overall bT-independent factor. Equation (98) sub-
stituted in Eq. (105) gives the explicit gq/p(xbj, bT) for the Yukawa theory example. Note carefully that gq/p(xbj, bT)
depends on the detailed choice of b⇤ and the value of bmax.

If bmax is small compared to ⇠ 1/m, then we can use the OPE approximation and write

f̃q/p(xbj, bT;µ) = f̃
OPE

q/p (xbj, b⇤;µ) exp{�gq/p(xbj, bT)}+O
�
m

2
b
2

max

�
, (106)

and, if bmax is small enough, we can just drop the O
�
m

2
b
2
max

�
errors.

In applications to QCD at high energies, it is often the hope is that the expressions analogous to Eq. (106) can be
used to exploit the OPE part f̃

OPE

q/p (xbj, b⇤;µ) for the widest possible range of bT, thereby minimizing the importance of

the m-dependent gq/p(xbj, bT) functions and maximally exploiting the predictive power in collinear pdfs and collinear
factorization alone. Thus, one chooses bmax to be as large as possible while still guaranteeing that it is reasonably
justified to drop the powers of mbmax in Eq. (106). In earlier sections, we defined Q0 to be the scale below which it
is no longer justified to neglect powers of m/Q0, so we should set

bmax ⇡ 1/Q0 . (107)

In analogous situations in QCD, the strategy would be to minimize contributions from higher orders in the OPE of
Eq. (100) as bT ! 0 in the f̃q/p(xbj, b⇤;µ) factor of Eq. (104), so that f̃

OPE

q/p (xbj, b⇤;µ) ⇡ fq/p(xbj;µ) up to a fixed

number of calculable higher orders. To this end, one chooses the scale µ to be order 1/b⇤. Let us thus define,

µb⇤ = b0/b⇤ , (108)

mhadron = mspectator = 1.0 GeV
<latexit sha1_base64="ke1IN5LUwhonrYLl9doPimHv2ic=">AAACHnicbZDLSgMxFIYzXmu9VV26CRbBVZnxgm6EogtdVrAXaEvJpKc2mEmG5IxYhvoibnwVNy4UEVzp25heBLX+EPj5zjmcnD+MpbDo+5/e1PTM7Nx8ZiG7uLS8sppbW69YnRgOZa6lNrWQWZBCQRkFSqjFBlgUSqiG16eDevUGjBVaXWIvhmbErpToCM7QoVbuIGo1EG4x7bK20apPj+k3sTFwZKjNAAYF/26Ez6DSb+XyfsEfik6aYGzyZKxSK/feaGueRKCQS2ZtPfBjbKbMoOAS+tlGYiFm/JpdQd1ZxSKwzXR4Xp9uO9KmHW3cU0iH9OdEyiJre1HoOiOGXfu3NoD/1eoJdo6aqVBxgqD4aFEnkRQ1HWRF28K4CGTPGcaNcH+lvMsM4+gSzboQgr8nT5rKbiHYK+xe7OeLJ+M4MmSTbJEdEpBDUiTnpETKhJN78kieyYv34D15r97bqHXKG89skF/yPr4A/pWi/g==</latexit>

mquark = 0.3 GeV
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lim
bmax!0

d

dbmax
f̃q/p(⇠, bT ) = 0

<latexit sha1_base64="AWKQhil4cGqOFObRSpcg8gl6ZyY="></latexit>
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Figure 6. d�NLO, d�ASY , WNLL and the sum WNLL + Y (see Eq. (3.3)), corresponding to the
three di↵erent SIDIS kinematical configurations defined in Fig. 1. Here bmax = 1.0 GeV�1, g1 = 0.3
GeV2, g1f = 0.1 GeV2, g2 = 0 GeV2.

fixes the bT scale of the transition between perturbative and non-perturbative regimes,

the distributions obtained from growing values of bmax die faster in bT , because the non-

perturbative contribution sets in at larger and larger values of bT .

3.3 Y term matching

It should now be clear that a successful matching heavily depends on the subtle inter-

play between perturbative and non-perturbative contributions to the total cross section,

and that finding a kinematical range in which the resummed cross section W matches its

asymptotic counterpart d�ASY , in the region qT ⇠ Q, cannot be taken for granted.

In Fig. 6 we show, in the three SIDIS configurations considered above, the NLO cross

section d�NLO (solid, red line), the asymptotic cross section d�ASY (dashed, green line)

and the NLL resummed cross section WNLL (dot-dashed, cyan line). The dotted blue line

represents the sum (WNLL + Y ), according to Eq. (2.19).

Clearly, in none of the kinematical configurations considered, WNLL matches d�ASY ,

they both change sign at very di↵erent values of qT . Moreover, the Y factor can be

very large compared to WNLL. Consequently, the total cross section WNLL + Y (dot-

ted, blue line) never matches the fixed order cross section d�NLO (solid, red line). At

low and intermediate energies, the main source of the matching failure is represented by

the non-perturbative contribution to the Sudakov factor. As we showed in Section 3.1,

the resummed term W of the cross section is totally dominated by the non-perturbative

input, even at large qT . Notice that, in the kinematical configurations of the COMPASS

experiment, the matching cannot be achieved simply by adding higher order corrections

to the perturbative calculation of the Y term, as proposed in Ref. [8], as WNLL is heavily

dependent on the non-perturbative input.

Interestingly, the cross section does not match the NLO result even at the highest

energies considered,
p
s = 1 TeV and Q2 = 5000 GeV2: further comments will be addressed

in the following subsection.

– 10 –
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• Blue band: 
– from survey of 

non-perturbative fits

• Pink band:
– Large transverse momentum 

calculation, width from varying 
RG scale

• Green:
– Small 𝑞'/𝑄 → 0 asymptote

• No overlap in the transition 
region for smaller Q

E. Moffat, et al Phys.Rev.D 104 (2021) 5, 059904
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• W-term 

•  Evolution

• Need input TMD pdf & ff for all k1T and k2T

“Straightforward”

W (qT , Q0) =

Z
d2k1T d2k2T f(x, k1T ;Q0)D(z, zk2T ;Q0)�

(2)(qT + k1T � k2T )
<latexit sha1_base64="MBkSKzReXrdsT4zqS20TwfVSnc4="></latexit>

W̃ (bT , Q) = W̃ (bT , Q0)E(Q,Q0, bT )
<latexit sha1_base64="68Ei8ldFE3uEizXzqDIpXWWTjfA=">AAACHHicbZDLSsNAFIYnXmu9RV26GSxCC6UkraAboSiCyxZ6gzaEyWTaDp1MwsxEKKEP4sZXceNCETcuBN/GSZuFtv4w8POdczhzfi9iVCrL+jbW1jc2t7ZzO/ndvf2DQ/PouCPDWGDSxiELRc9DkjDKSVtRxUgvEgQFHiNdb3Kb1rsPREga8paaRsQJ0IjTIcVIaeSatYGizCdJd1b03Fa5WYLXcAm5VgneFZupKWtQgq5ZsCrWXHDV2JkpgEwN1/wc+CGOA8IVZkjKvm1FykmQUBQzMssPYkkihCdoRPrachQQ6STz42bwXBMfDkOhH1dwTn9PJCiQchp4ujNAaiyXayn8r9aP1fDKSSiPYkU4XiwaxgyqEKZJQZ8KghWbaoOwoPqvEI+RQFjpPPM6BHv55FXTqVbsWqXavCjUb7I4cuAUnIEisMElqIN70ABtgMEjeAav4M14Ml6Md+Nj0bpmZDMn4I+Mrx93qZ5t</latexit>
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• Probability density/ partonic structure interpretation 

•  Consistent large kT behavior (LO for now)

Hadron structure oriented (HSO) approach 

2

energies, shown in the far left plot, that a region starts to emerge where the asymptotic and W terms ( very roughly)
overlap. While the details of the mismatch depend on the specifics of the implementation, the trend appears to be
quite general [citations?], and applies to other processes where TMD factorization is used. The overall picture suggests
that something is still missing from the usual ways that TMD factorization is implemented at a practical level, at
least with regard to how the transition between perturbative and nonperturbative parts is included.

In this paper, we will show how to recover the consistency between the W term and the large qT asymptote by
using an approach recently introduced by two of us in Ref. [9]. In the process, we will diagnose some of the issues
that have given rise to a mismatch in the past. One problem arises from the way constraints of the form

fi/p(x;Q0) = ⇡

Z
Q

2
0

dk2T fi/p(x,kT;Q0) , (1)

are imposed, where here there is an “⇡” rather than a strict equality because such integrals are generally ultraviolet
(UV) divergent and are only guaranteed to be satisfied literally at the parton model level. Given a parametrization of
fi/p(x), the parameters in a model of nonperturbative transverse momentum in fi/p(x,kT) are constrained by Eq. (1).
Now, in the Collins-Soper-Sterman (CSS) formalism or similar approaches to TMD factorization, the nonperturbative
transverse momentum dependence is contained within transverse coordinate space functions usually labeled gi/p(x, bT)
(and gK(bT) for the Collins-Soper (CS) kernel). To our knowledge, however, constraints corresponding to Eq. (1) are
never directly imposed on the gi/p(x, bT) functions in phenomenological applications. This gives rise to a possible
mismatch between the models of nonperturbative transverse momentum and the collinear functions fi/p(x) that are
used in the perturbative tails. As we will see in this paper, the e↵ects of the mismatch can propagate to moderate
kT in transverse momentum space where they spoil the matching at intermediate transverse momentum.

We will also find that the matching improves if there is a transformation from the usual collinear pdfs and ↵s that
are defined in MS renormalization to ones defined with a cuto↵ transverse momentum regulator. That is, if we use

f c(x;µ) ⌘ ⇡

Z
µ
2

0
dk2T fi/p(x,kT;µ;

p
⇣) , (2)

where µ is the usual auxiliary mass parameter associated with MS renormalization and ⇣ is the CS scale. The
“c” superscript on the left-hand side stands for “cuto↵ scheme.” Since large transverse momentum dependence is
calculated in collinear factorization in momentum space, it turns out that the definition in Eq. (2) is the more natural
one to use. Of course, one can ultimately transform between definitions, as we will discuss.

A coherent treatment of these issues is necessary for a meaningful analysis of future SIDIS data in terms of TMD
parton correlation functions to be possible. Thus, it is critical for the interpretation of, for example, forthcoming
results from the CEBAF 12 GeV program or a 24 GeV upgrade [10], as well as for a future electron-ion collider
(EIC).

In this paper, we will set up the calculation of the W term for SIDIS using the approach of [9], and we will analyze
the transition to the large qT asymptotic term in detail. We will use it to show how to fix the problems outlined
above and ensure satisfactory coherence between nonperturbative TMD pdfs and ↵s and large transverse momentum
behavior. The structure of the paper is as follows...

=) TR - mention EIC and other experiments... CEBAF upgrade?

II. SEMI-INCLUSIVE DIS

We will adopt standard conventions for expressing SIDIS cross sections in the current fragmentation region, and
our labels for the kinematical variables are mostly consistent with those of [11]. A lepton with momentum l scatters
o↵ a hadron target with momentum p, and the momentum of the recoiling lepton is l0. The final state contains a
measured hadron with momentum PB and is inclusive in all other final states X:

l + p ! l0 + PB +X (3)

Throughout this paper, we will use the usual Lorentz invariant kinematical variables,

q2 = �Q2 , xbj =
Q2

2p · q , zh =
PB · p
p · q , (4)

6

For the TMD pdfs, the expressions are similar,

finpt,i/p(x,kT;µQ0 , Q
2
0) =

1

2⇡

1

k2T +m2
fi/p

"
Af

i/p
(x;µQ0) +Bf

i/p
(x;µQ0) ln

Q2
0

k2T +m2
fi/p

#

+
1

2⇡

1

k2T +m2
fg/p

Af

g/p
(x;µQ0)

+
Cf

i/p

⇡M2
fi/p

e
�k

2
T/M

2
fi/p , (27)

with abbreviations

Af

i/p
(x;µQ0) ⌘

↵s(µQ0)

⇡

⇢⇥
(Pqq ⌦ fi/p)(x;µQ0)

⇤
� 3CF

2
fi/p(x;µQ0)

�
, (28)

Bf

i/p
(x;µQ0) ⌘

↵s(µQ0)CF

⇡
fi/p(x;µQ0) , (29)

Af

g/p
(x;µQ0) ⌘

↵s(µQ0)

⇡

⇥
(Pqg ⌦ fg/p)(x;µQ0)

⇤
, (30)

Cf

i/p
⌘ fi/p(x;µQ0)�Af

i/p
(x;µQ0) ln

 
µQ0

mfi/p

!
�Bf

i/p
(x;µQ0) ln

 
µQ0

mfi/p

!
ln

 
Q2

0

µQ0mfi/p

!
,

�Af

g/p
(x;µQ0) ln

 
µQ0

mfg/p

!
+

↵s(µQ0)

2⇡

n
[Ci/p

� ⌦ fi/p](x;µQ0) + [Cg/p

� ⌦ fg/p](x;µQ0)
o

. (31)

where

Pqg(x) = TF

⇥
x2 + (1� x)2

⇤
, (32)

Ci/p

� (x) = CF (1� x)� CF

⇡2

12
�(1� x) , (33)

Cg/p

� (x) = 2TFx(1� x) . (34)

It is to be understood that all perturbative parts in this paper are calculated to lowest order in ↵s. To extend the
TMD pdf and ↵ parametrizations to bT ⌧ 1/Q0, we transform to transverse coordinate space and use Eq. (92) of [9]
and its analog for the TMD pdf,

D̃B/j(z, bT;µQ0 , Q
2
0) = D̃inpt,B/j(z, bT;µQ0

, Q
2
0)E(Q0, bT) . (35)

f̃i/p(x, bT;µQ0 , Q
2
0) = f̃inpt,i/p(x, bT;µQ0

, Q
2
0)E(Q0, bT) . (36)

with

E(Q0, bT) ⌘ exp

(Z
µQ0

µQ0

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q0

µ0 �K(↵s(µ
0))

�
+ ln

Q0

Q0

K̃inpt(bT;µQ0
)

)
. (37)

Once D̃B/j(z, bT;µQ0 , Q
2
0) and f̃i/p(x, bT;µQ0 , Q

2
0) are determined as above, the W -term at any other larger scale Q

is found by substituting these into Eq. (15).
The “input” functions of Eq. (18) and Eq. (27) can be understood as a phenomenological model, a Gaussian in the

present case, which has been constrained to the perturbative large-kT collinear factorization approximations for the
TMD pdfs and ↵s,

Dpert
inpt,h/j(z, zkT;µQ, Q

2) =
1

2⇡z2
1

k2T


AD

h/j
(z;µQ) +BD

h/j
(z;µQ) ln

Q2

k2T

�
+

1

2⇡z2
1

k2T
AD

h/g
(z;µQ) , (38)

f(x,kT;µQ0 , Q
2
0)

kT⇡Q0�! 1

2⇡

1

k2T


Af

i/p
(x;µQ0) +Bf

i/p
(x;µQ0) ln

Q2
0

k2T

�
+

1

2⇡

1

k2T
Af

g/p
(x;µQ0) , (39)

which are good approximations to the TMD ↵s and pdfs when kT ⇡ Q and Q � m, and are calculable entirely within
leading power collinear factorization.
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• HSO constrained

• Standard version
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C. The conventional treatment

The usual approach to applying TMD factorization to phenomenology has been reviewed in many places, so we
will not repeat the details here. Readers are referred to, for example, Refs. [1, 14, 15] and references therein. The
standard expression used in calculations follow from making the following replacement in Eqs. (55):

⇥
fj/p, DB/j

⇤
!
Z

d2bT
(2⇡)2

e�iqT·bT f̃OPE
j/p

(xbj, b⇤;µb⇤ , µ
2
b⇤) D̃

OPE
h/j

(zh, b⇤;µb⇤ , µ
2
b⇤)

⇥ exp

(
2

Z
µQ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q

µ0 �K(↵s(µ
0))

�
+ ln

Q2

µ2
b⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gj/p(xbj, bT)� gh/j(zh, bT)� gK(bT) ln

✓
Q2

Q2
0

◆�
, (64)

The f̃OPE
j/p

and D̃OPE
h/j

on the first line are the TMD pdfs and ↵s in bT-space, expanded and truncated in an operator

product expansion. The �, �K and K̃ are the usual evolution kernels. The “b⇤” method has been used to regulate
f̃OPE
j/p

, D̃OPE
h/j

m and K̃ at large bT. The most common choice for b⇤ is

b⇤(bT) =
bTp

1 + b2T/b
2
max

. (65)

where bmax is a transverse size scale that separates demarcates large and small size regions. In principle, both the
functional form of Eq. (65) and the value of bmax are completely arbitrary, but a small bmax justifies the use of the
OPE on the first line of Eq. (64). All of the nonperturbative transverse momentum dependence is contained in the
bT-space functions gj/p, gB/j , and gK , whose definitions in terms of more fundamental objects are

�gj/p(x, bT) ⌘ ln

 
f̃j/p(x, bT;µQ0 , Q

2
0)

f̃j/p(x, b⇤;µQ0 , Q
2
0)

!
, �gh/j(z, bT) ⌘ ln

 
D̃h/j(z, bT;µQ0 , Q

2
0)

D̃h/j(z, b⇤;µQ0 , Q
2
0)

!
, (66)

and

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (67)

Conventional methods replace each of the g-functions, gj/p, gB/j , and gK , by an ansatz, with parameters to be
fitted from measurements. The simplest most common choices (see, e.g., the summary in [14] and ) are based around
simple power laws like

gj/p(xbj, bT) =
1

4
M2

gF
b2T , gh/j(zh, bT) =

1

4 z2h
M2

gD
b2T (68)

for the input nonperturbative functions. For the CS kernel, common parametrizations are

gK(bT) =
g2
2
b2T or gK(bT) =

g2
2m2

2

ln
�
1 +m2

2b
2
T

�
, (69)

where g2 and m2 are fit parameters. The first of these functional forms is traditionally very common in applications,
but it is in conflict with the expectation that evolution is slow at moderate Q. As a result, it was suggested in Ref. [14]
that gK(bT) should exhibit very nearly constant behavior at large bT, a behavior closely modeled by a logarithmic
function.

More complex fit parametrizations for all the g-functions have been introduced more recently [cite], but their general
qualitative behavior is similar to the above. What distinguishes all such approaches from what we advocate in this
paper (and previously in [9]) is that they do not impose general consistency constraints on the g-functions. Specifically,
the ansatzes do not explicitly enforce the integral connection between collinear and TMD pdfs and ↵s in Eq. (2), and
the do not guarantee a smooth interpolation to the large kT region where collinear factorization becomes reliable.
One consequence is that the nonperturbative parts of the TMD functions lose a critical aspect of their parton model
or hadron structure interpretation. Another is that the transition to the large qT region is not reasonably consistent
with fixed or collinear factorization calculations, especially at moderate Q, as we will show momentarily.
It is possible to estimate typical numerical values for MgF 4, MgD , g2 and m2 from figures like figure from [cite].
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For the TMD pdfs, the expressions are similar,

fi/p(x,kT;µQ0 , Q
2
0) =

1

2⇡

1

k2T +m2
fi/p

"
Af

i/p
(x;µQ0) +Bf

i/p
(x;µQ0) ln

Q2
0

k2T +m2
fi/p

#

+
1

2⇡

1

k2T +m2
fg/p

Af

g/p
(x;µQ0) +

Cf

i/p

⇡M2
fi/p

e
�k

2
T/M

2
fi/p , (27)

with abbreviations

Af

i/p
(x;µQ0) ⌘

↵s(µQ0)

⇡

⇢⇥
(Pqq ⌦ fi/p)(x;µQ0)

⇤
� 3CF

2
fi/p(x;µQ0)

�
, (28)

Bf

i/p
(x;µQ0) ⌘

↵s(µQ0)CF

⇡
fi/p(x;µQ0) , (29)

Af

g/p
(x;µQ0) ⌘

↵s(µQ0)

⇡

⇥
(Pqg ⌦ fg/p)(x;µQ0)

⇤
, (30)

Cf

i/p
⌘ fi/p(x;µQ0)�Af

i/p
(x;µQ0) ln

 
µQ0

mfi/p

!
�Bf

i/p
(x;µQ0) ln

 
µQ0

mfi/p

!
ln

 
Q2

0

µQ0mfi/p

!
,

�Af

g/p
(x;µQ0) ln

 
µQ0

mfg/p

!
+

↵s(µQ0)

2⇡

n
[Ci/p

� ⌦ fi/p](x;µQ0) + [Cg/p

� ⌦ fg/p](x;µQ0)
o

. (31)

where

Pqg(x) = TF

⇥
x2 + (1� x)2

⇤
, (32)

Ci/p

� (x) = CF (1� x)� CF

⇡2

12
�(1� x) , (33)

Cg/p

� (x) = 2TFx(1� x) . (34)
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Gaussian NP core

Integral constraint

(Integral constraints even for g-function!)
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Impose the partonic interpretation at the input scale  

conventional constrained
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• Monte Carlo question: Importance of ”large” vs “small” 
transverse momentum?

• What does large/small transverse momentum mean?

• Answer depends on how simulation is to be used:
– Testing notions of intrinsicness / partonic structure
– Precision at high energies?
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Conclusions


