Hadron structure-oriented approach to TMD phenomenology

Fatma Aslan

M. Boglione, J. O. Gonzalez-Hernandez, T. Rainaldi, T. C. Rogers, A. Simonelli



Outline

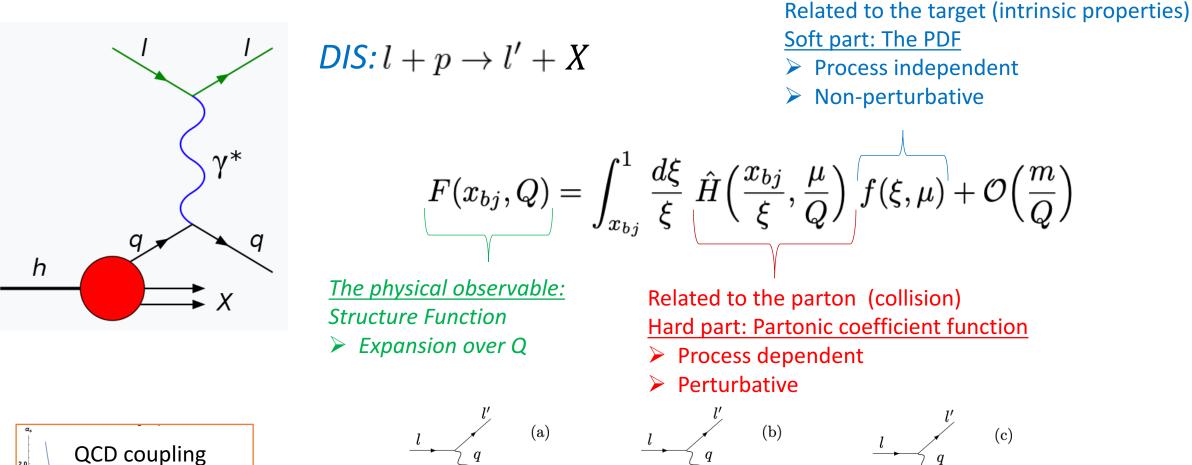
□ Factorization and Distribution functions

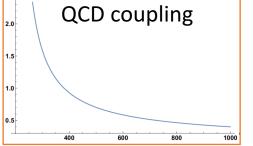
TMDs and conventional TMD phenomenology

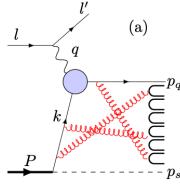
□ Problems with the conventional TMD phenomenology

□ Hadron Structure Oriented (HSO) TMD phenomenology

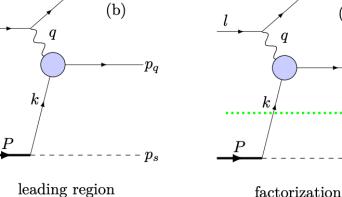
DIS Factorization and Collinear Parton Distribution functions, (PDFs), f(x)







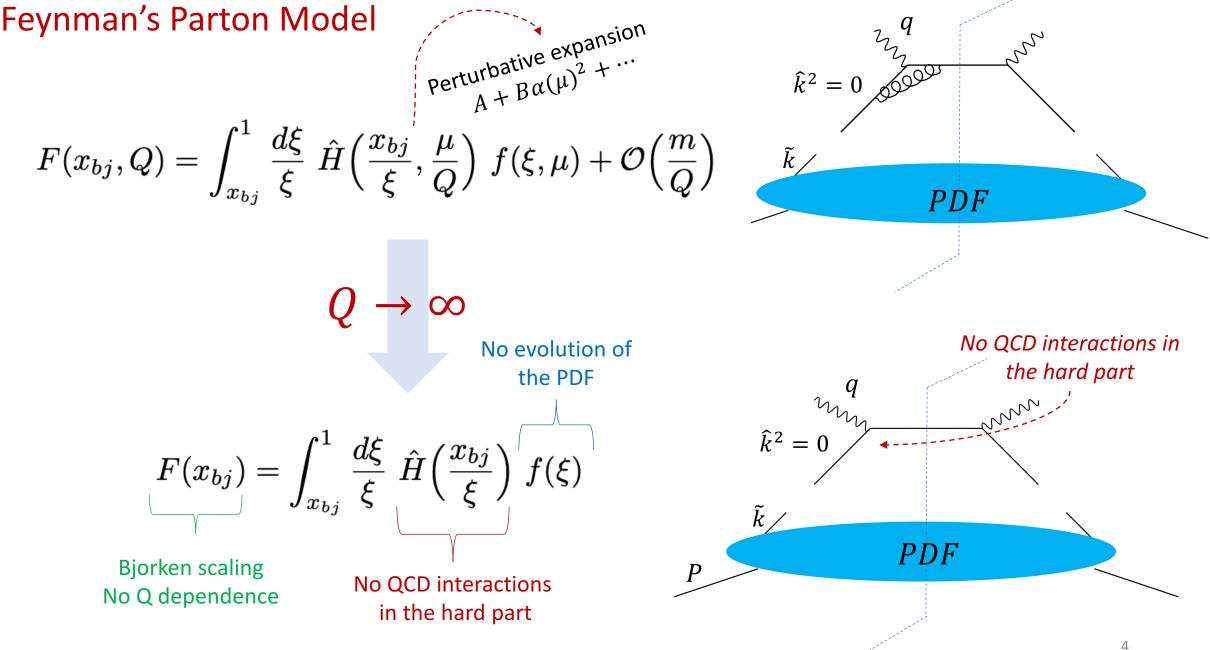
QCD event

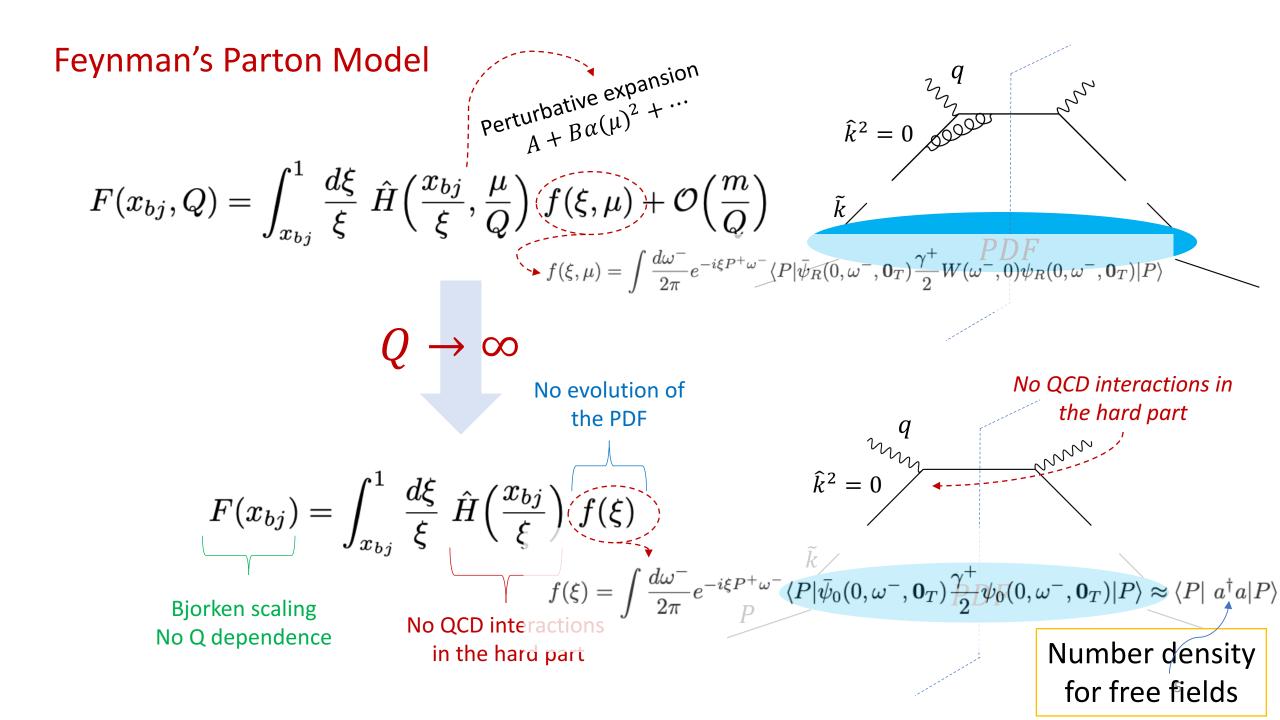


 p_q

 p_s

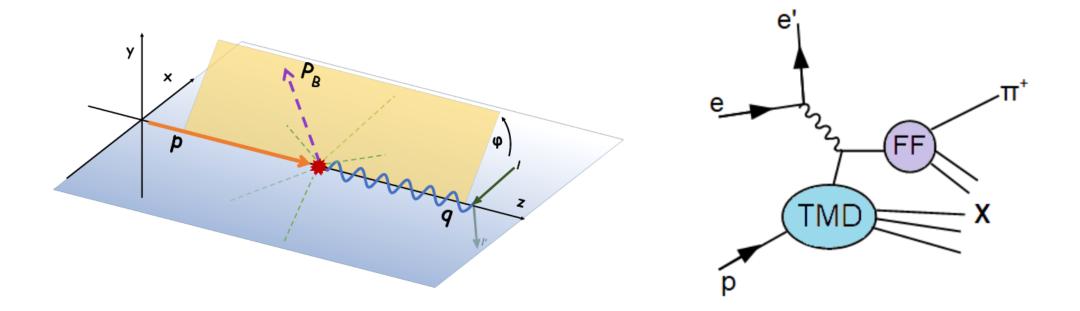
Feynman's Parton Model





SIDIS Factorization and Transverse Momentum Dependent Distributions (TMDs), $f(x, k_T)$, $D(z, k_T)$

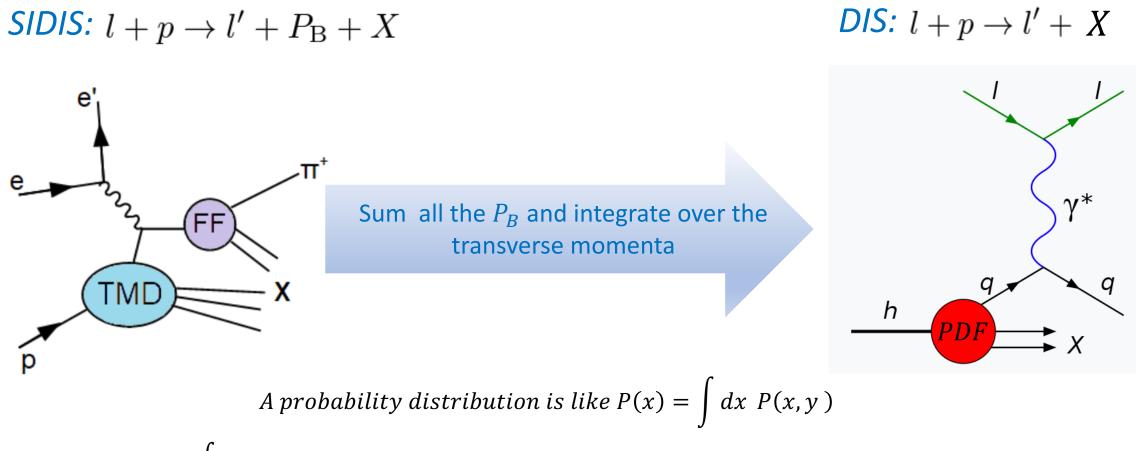
SIDIS:
$$l + p \rightarrow l' + P_{\rm B} + X$$



$$W^{\mu\nu}(x,Q,z,\mathbf{P_{BT}}) = \sum_{i} H_{j}^{\mu\nu} \int d^{2}\mathbf{k}_{1T} d^{2}\mathbf{k}_{2T} \int f_{j/p}(x,\mathbf{k}_{1T};\mu_{Q},Q^{2}) \int D_{h/j}(z,z\mathbf{k}_{2T};\mu_{Q},Q^{2}) \delta^{(2)}(\mathbf{q}_{T}+\mathbf{k}_{1T}-\mathbf{k}_{2T})$$

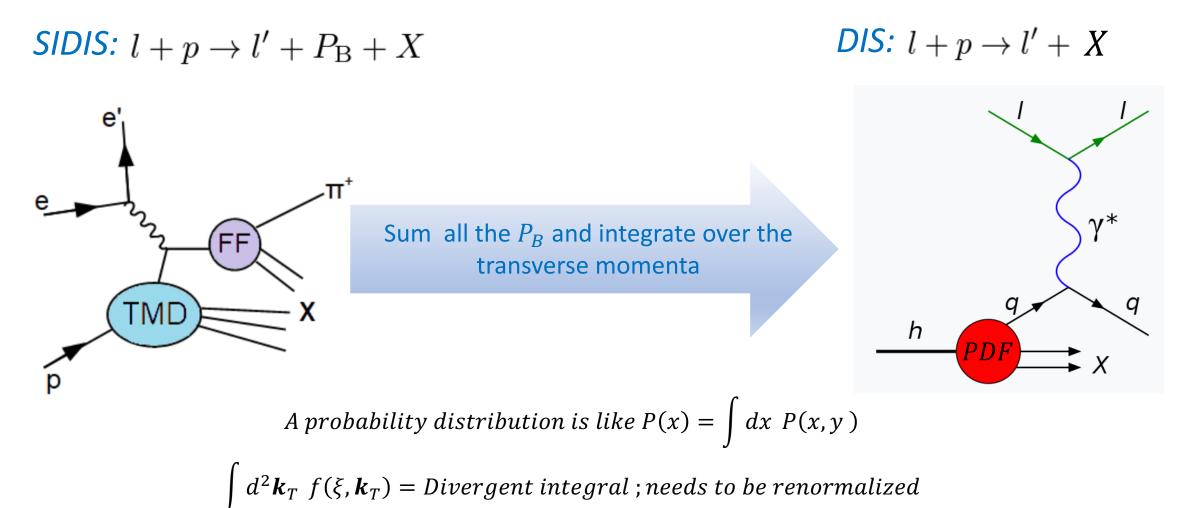
$$TMD PDF \qquad TMD FF \qquad 6$$

The integral relation



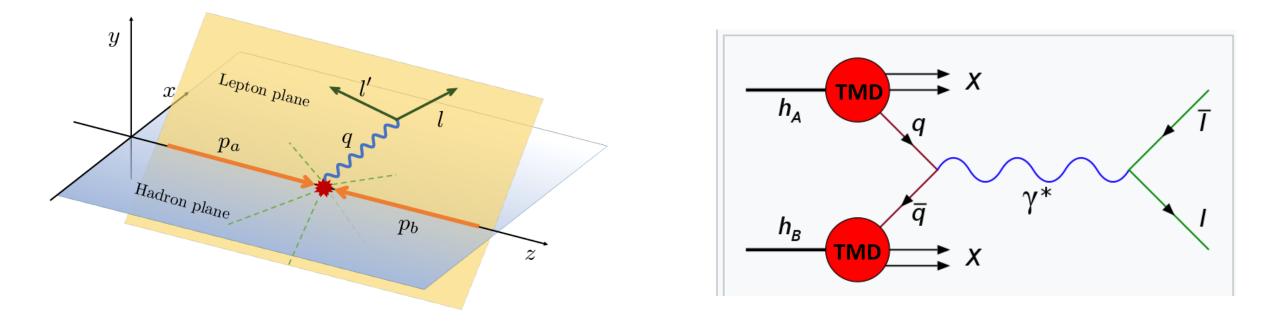
 $d^2 \mathbf{k}_T f(\xi, \mathbf{k}_T) = Divergent integral; needs to be renormalized$

The integral relation



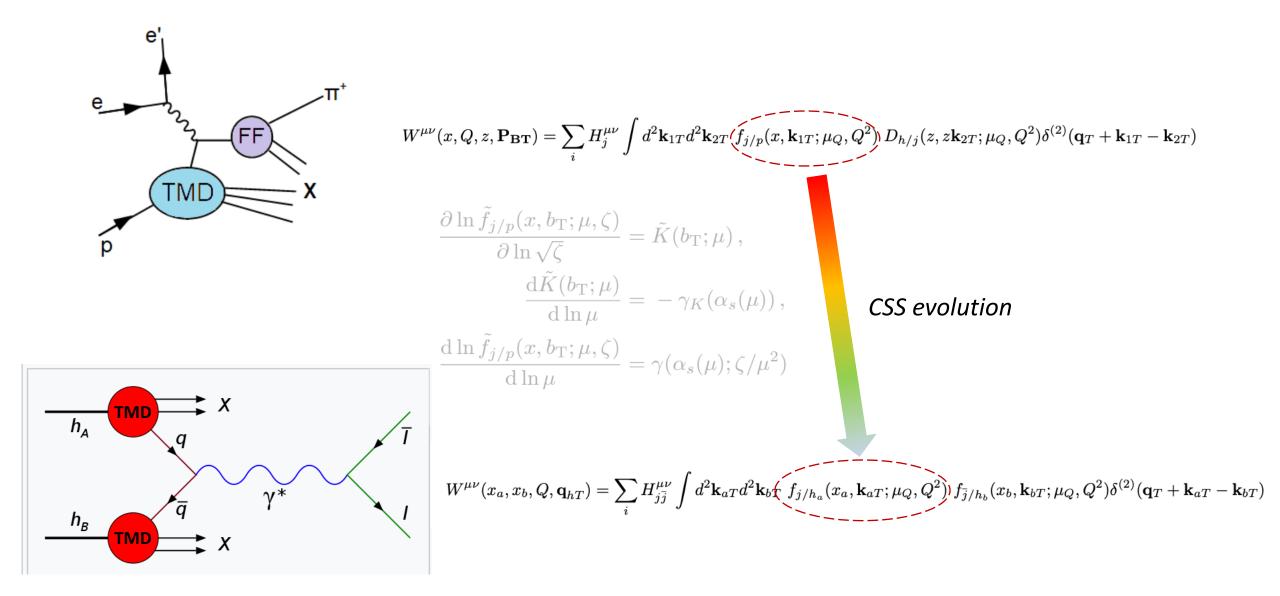
Probability of interacting with a quark that carries longitudinal momentum fraction, $\xi \left(f(\xi) = \int d^2 \mathbf{k}_T (f(\xi, \mathbf{k}_T))$ longitudinal momentum fraction, ξ and transverse momentum \mathbf{k}_T DY Factorization and Transverse Momentum Dependent Distributions (TMDs), $f(x, k_T)$

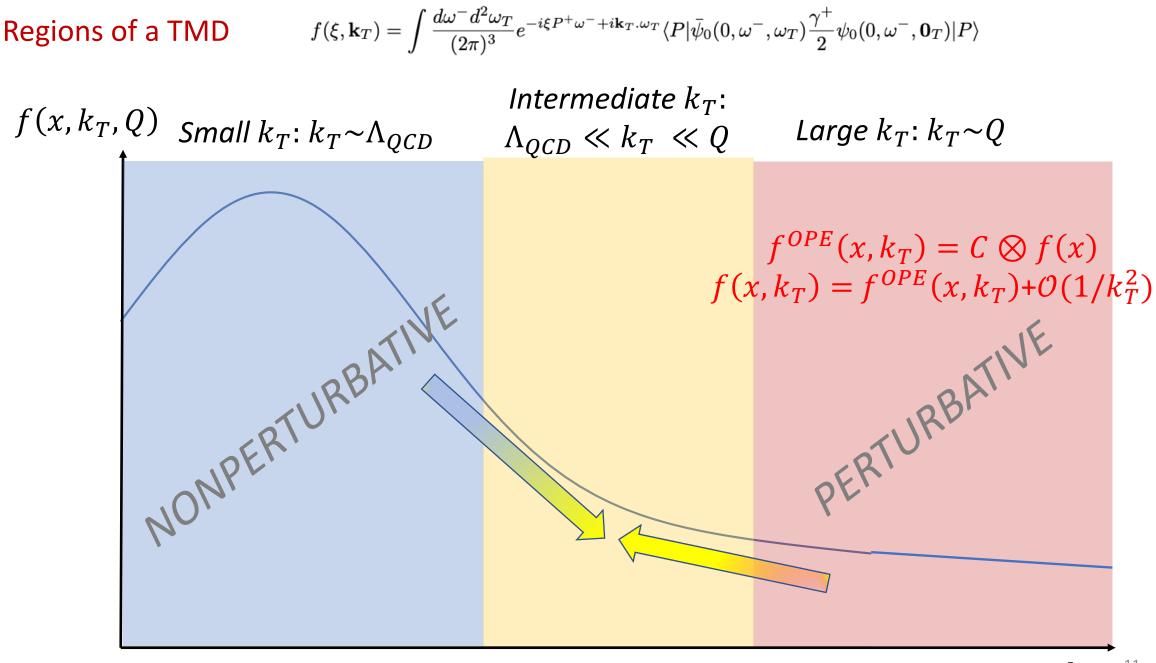
DY:
$$p_a + p_b \rightarrow l + l' + X$$
.



$$W^{\mu\nu}(x_{a}, x_{b}, Q, \mathbf{q}_{hT}) = \sum_{i} H^{\mu\nu}_{j\bar{j}} \int d^{2}\mathbf{k}_{aT} d^{2}\mathbf{k}_{bT} \int f_{j/h_{a}}(x_{a}, \mathbf{k}_{aT}; \mu_{Q}, Q^{2}) \int f_{\bar{j}/h_{b}}(x_{b}, \mathbf{k}_{bT}; \mu_{Q}, Q^{2}) \delta^{(2)}(\mathbf{q}_{T} + \mathbf{k}_{aT} - \mathbf{k}_{bT})$$

Evolution of TMDs

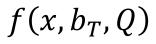




11 k_T

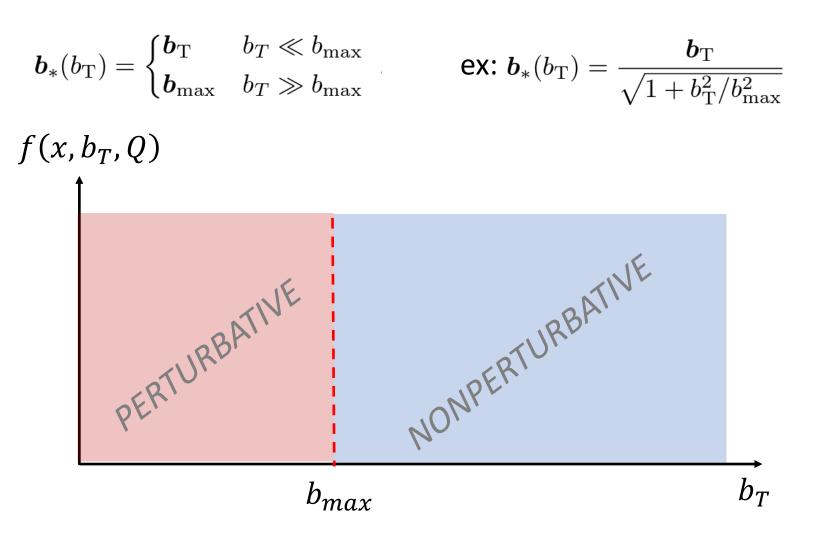
• Fourier transform $f(x, \mathbf{k}_T, Q)$ into the coordinate space

$$\tilde{f}(x, \mathbf{b}_T, Q) = \int d^2 \mathbf{k}_T \ e^{-i\mathbf{k}_T \cdot \mathbf{b}_T} f(x, \mathbf{k}_T, Q)$$

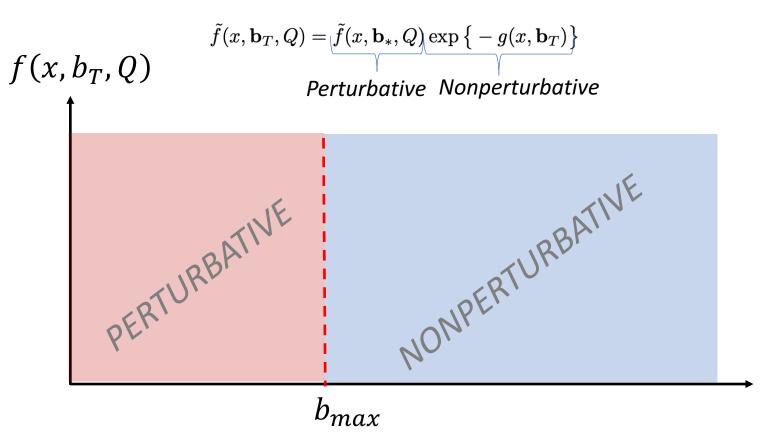


 b_T

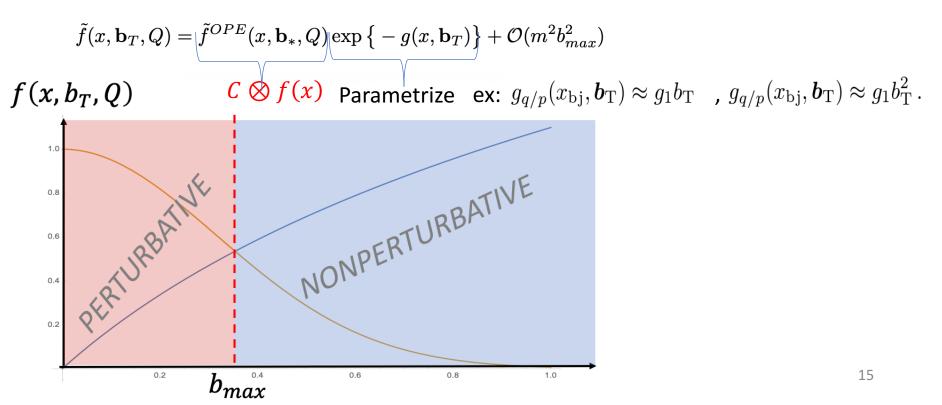
- Fourier transform $f(x, \mathbf{k}_T, Q)$ into the coordinate space
- Choose a demarcation line that separates the nonperturbative and perturbative regions; b_{max}



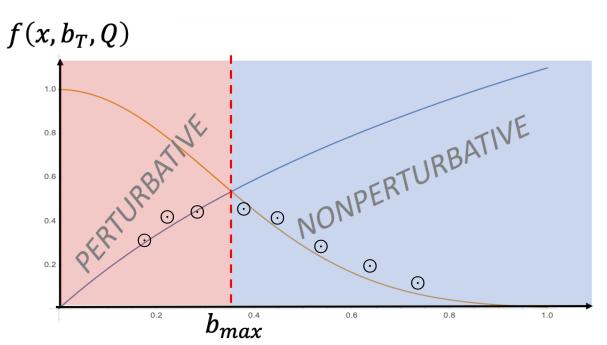
- Fourier transform $f(x, \mathbf{k}_T, Q)$ into the coordinate space
- Choose a demarcation line that separates the nonperturbative and perturbative regions; b_{max}
- Separate $\tilde{f}(x, \boldsymbol{b}_T, Q)$ into perturbative and non-perturbative (NP) parts



- Fourier transform $f(x, \mathbf{k}_T, Q)$ into the coordinate space
- Choose a demarcation line that separates the nonperturbative and perturbative regions; b_{max}
- Separate $\tilde{f}(x, \boldsymbol{b}_T, Q)$ into perturbative and non-perturbative (NP) parts
- Calculate the perturbative part using OPE and parameterize the non-perturbative part



- Fourier transform $f(x, \mathbf{k}_T, Q)$ into the coordinate space
- Choose a demarcation line that separates the nonperturbative and perturbative regions; b_{max}
- Separate $\tilde{f}(x, \boldsymbol{b}_T, Q)$ into perturbative and non-perturbative (NP) parts
- Calculate the perturbative part using OPE and parameterize the non-perturbative part
- Find the parameters through the fits to the data



Problems of Conventional TMD pheno

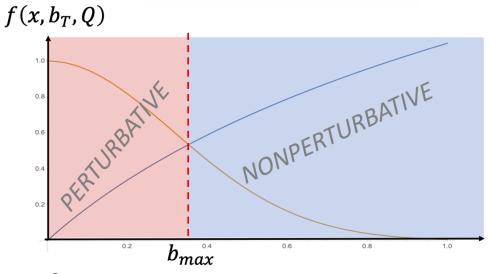
- Demarcating the regions as perturbative and nonperturbative in coordinate space and the arbitrary b_{max} dependence
- Matching the TMD parametrizations to the perturbative tail

$$ilde{f}(x,\mathbf{b}_T,Q) = ilde{f}^{OPE}(x,\mathbf{b}_*,Q) \exp\left\{-g(x,\mathbf{b}_T)
ight\} + \mathcal{O}(m^2 b_{max}^2)$$

 Preserving the relation between the TMD and the collinear PDFs to preserve the probabilistic meaning of the TMD

$$f_{i/h}(x) \approx \int \mathrm{d}^2 \mathbf{k}_{\mathrm{T}} f_{i/h}(x, \mathbf{k}_{\mathrm{T}})$$

The scale the fits are done and evolution



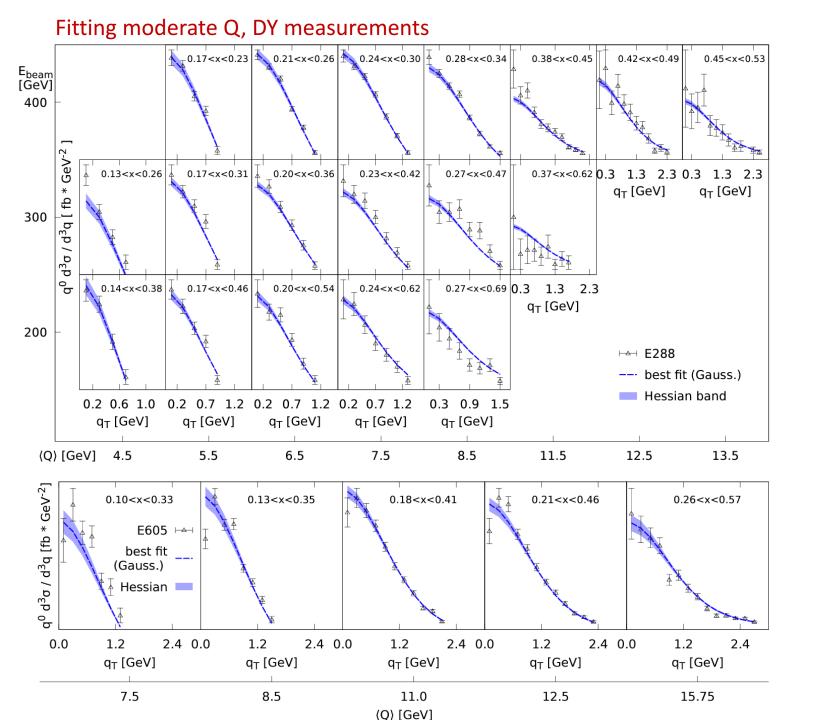
Hadron structure-oriented approach: The parametrization

A parametrization that
> behaves like
$$f(x, k_T, Q^2) = -\begin{cases} f^{OPE} & \text{at large } k_T \\ & \text{NP peak at small } k_T \end{cases}$$

> satisfies $f(x) = \int d^2k_T f(x, k_T)$

$$\begin{aligned} f_{\text{inpt},i/p}(x,k_{\text{T}};\mu_{Q_0},Q_0^2) &= \frac{1}{2\pi} \frac{1}{k_{\text{T}}^2 + m_{i,p,A}^2} A_{i/p}(x;\mu_{Q_0}) + \frac{1}{2\pi} \frac{1}{k_{\text{T}}^2 + m_{i,p,B}^2} B_{i/p}(x;\mu_{Q_0}) \ln\left(\frac{Q_0^2}{k_{\text{T}}^2 + m_{i,p,L}^2}\right) \\ &+ \frac{1}{2\pi} \frac{1}{k_{\text{T}}^2 + m_{g,p}^2} A_{i/p}^g(x;\mu_{Q_0}) \\ &+ C_{i/p} f_{\text{core},i/p}(x,k_{\text{T}};Q_0^2) \,. \end{aligned}$$

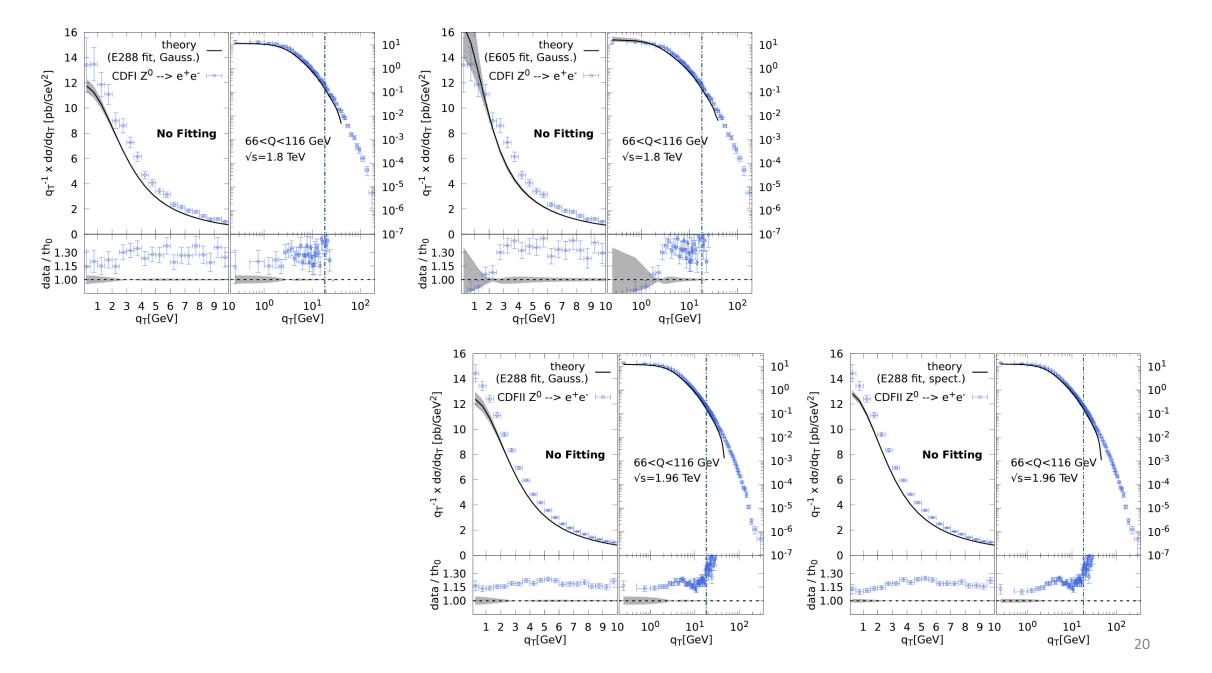
$$\begin{split} f_{\text{core},i/p}^{\text{Gauss}}(x,\boldsymbol{k}_{\text{T}};Q_{0}^{2}) &= \frac{e^{-k_{\text{T}}^{2}/M_{\text{F}}^{2}}}{\pi M_{\text{F}}^{2}} \,. \\ f_{\text{core},i/p}^{\text{Spect}}(x,\boldsymbol{k}_{\text{T}};Q_{0}^{2}) &= \frac{1}{\pi} \frac{6\,L^{6}}{L^{2} + 2(m_{q} + x\,M_{p})^{2}} \frac{k_{\text{T}}^{2} + (m_{q} + x\,M_{p})^{2}}{(k_{\text{T}}^{2} + L^{2})^{4}} \,, \quad L^{2} &= (1-x)\Lambda^{2} + xM_{X}^{2} - x(1-x)M_{p}^{2} \,. \end{split}$$



	Gaussian fits	
	E288 (130 pts.)	E605 (52 pts.)
$\chi^2_{ m dof}$	1.04	1.68
$M_0 \; ({ m GeV})$	0.0576	0.404
$M_1 \; ({\rm GeV})$	0.403	0.290
b_K	2.12	0.744
N(nuisance $)$	1.29	1.28

Spectator model fit		
	E288 (130 pts.)	
$\chi^2_{ m dof}$	1.04	
$\Lambda ~({ m GeV})$	0.801	
$M_X \ ({\rm GeV})$	0.438	
b_K	1.90	
N(nuisance $)$	1.23	

Testing predictions at larger Q



- Demarcating the regions as perturbative and nonperturbative in coordinate space and the arbitrary b_{max} dependence
- Matching the TMD parametrizations to the perturbative tail
- Preserving the relation between the TMD and the collinear PDFs to preserve the probabilistic meaning of the TMD

$$\int \mathrm{d}^2 oldsymbol{k}_{\mathrm{T}} \, f_{i/h}(x,oldsymbol{k}_{\mathrm{T}}) \, ,$$

 Fits are made at high Q and TMDs are evolved from to low Q

- Hadron structure-oriented approach
- There is no abrupt separation of perturbative and nonperturbative regions, no b_{max} dependence
- There is no matching issue. The nonperturbative part matches the OPE tail by construction
- The relation between the TMD and the collinear PDFs is preserved and the TMDs have a physical meaning

$$f_{i/h}(x) \approx \int \mathrm{d}^2 \mathbf{k}_{\mathrm{T}} f_{i/h}(x, \mathbf{k}_{\mathrm{T}})$$

 Fits are made at moderate Q and TMDs are evolved to high Q

Outlook

□ Extending the HSO analysis to data covering larger values of Q.

Broadening the range of processes included at the fitting stage, and to employ a more diverse and sophisticated set of nonperturbative calculations and model assumptions in the treatment of nonperturbative structures.

□ Improving the parametrization and get better agreements for the postdictions

D