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ABSTRACT

AN APPLICATION TO AUTOMATE REFERENCE FRAME
TRANSFORMATIONS IN HIGH-ENERGY AND NUCLEAR

PHYSICS

George Vassilakopoulos
Old Dominion University, 2025

Director: Dr. Ted Rogers

In high-energy and nuclear physics, analyzing the behavior and substructure of

final state particles, such as hadronic jets, is critical to understanding the dynamics

of quarks and gluons (so-called “partons”) governed by Quantum Chromodynam-

ics (QCD) in highly relativistic collisions. These final states, observed in particle

collider experiments, emerge from the fragmentation and hadronization of energetic

partons and are studied theoretically in specific reference frames. This thesis presents

a MATLAB-based application developed to automate and visualize Lorentz and ro-

tational transformations. The application enables users to define input four-vectors

and perform precise relativistic boosts and rotations to focus on specific final state

structures in relativistic particle collisions. It leverages compact analytic expres-

sions for transformation matrices, offering flexibility for a wide range of physical sce-

narios. Demonstrations involving electron-positron annihilation and proton-proton

collision-inspired examples illustrate the application’s capability to transform lab

frame vectors to new frames optimized for QCD analyses. This tool enhances the

interpretability of final state observables by streamlining these transformations and

providing interactive 3D and 2D visualizations of vectors before and after frame

shifts. It is particularly useful for theoretical investigations and experimental com-

parisons involving jet substructure, fragmentation functions, and parton distribution

functions.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Quantum Chromodynamics (QCD) is the fundamental theory in particle physics

that describes the strong interaction, one of the four fundamental forces of nature.

The strong interaction governs how quarks and gluons (so-called “partons”) inter-

act. QCD exhibits three main properties that govern its behavior: confinement,

asymptotic freedom, and chiral symmetry breaking.

Confinement imposes that color-charged particles, such as quarks and gluons,

cannot exist in isolation. The force-carrying gluons of QCD carry a color charge

unlike Quantum Electrodynamic (QED) charged particles. QED particles experience

an electric field whose strength decreases as particles separate in distance. On the

other hand, the gluon field between a pair of color charges forms a narrow flux tube

(or string) between them. Because of this behavior of the gluon field, the strong force

between the particles is constant regardless of their separation. Therefore, as quarks

separate to try and exist in isolation, it becomes more favorable for their tube to

“snap” and form a quark-antiquark pair.

Asymptotic freedom and chiral symmetry breaking describe the behavior of QCD

across energy scales. Asymptotic freedom is the property that the strong interaction

weakens at high energies or short distances, allowing quarks and gluons to behave

almost as free particles, a property crucial for high-energy particle collisions. Con-

versely, the strong force becomes stronger at low energies or large distances, confining

quarks and gluons within hadrons. At this scale, QCD’s approximate chiral symmetry

is spontaneously broken by the non-trivial structure of the QCD vacuum, resulting

in the formation of a quark condensate and giving rise to pseudo-Goldstone bosons,

such as pions, kaons, and etas [2]. These phenomena together capture the dual nature

of QCD: perturbative at high energies and non-perturbative at low energies, shaping

the fundamental interactions and structure of matter.
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Hadronic jets are essential observables in high-energy collisions, serving as di-

rect signatures of quarks and gluons produced in hard scatterings. These colli-

mated sprays of hadrons arise from the fragmentation and hadronization of ener-

getic partons, processes governed by Quantum Chromodynamics (QCD). Despite

the complexity of hadronization, the overall energy and momentum distributions of

jets remain closely linked to their initiating partons, allowing for detailed studies of

QCD dynamics [3]. Early observations of jet structures in electron-positron collisions

at PETRA and SLAC, followed by precision measurements at the Large Electron-

Positron Collider (LEP) and hadron colliders like the LHC, have established jets as

a fundamental tool for probing the strong interaction [4].

The internal composition and number of jets in a collision depend on the energy

and type of particles involved. In a simple scenario, a quark-antiquark pair produces

two jets, but more complex interactions can lead to additional jets through gluon

radiation [4]. Proton-proton collisions, such as those at the LHC, involve partons

carrying unknown momentum fractions, leading to varying jet multiplicities and en-

ergies. In contrast, electron-positron collisions, like those at LEP, provide a cleaner

environment with simple leptonic initial states, producing predominantly two jets

unless additional radiation occurs. The absence of Parton Distribution Functions

(PDFs) in electron-positron collisions makes them ideal for precision studies of frag-

mentation functions, which can then be applied to more complex systems, such as

electron-proton or hadron-hadron collisions. By applying these transformations, re-

searchers can better study individual jet dynamics, distinguishing them from the

global event properties and enhancing our understanding of the fundamental forces

that govern particle interactions.

1.2 MOTIVATION

Hadronic jets are essential observables in high-energy collisions, serving as the

experimental signatures of quarks and gluons produced in hard scatterings. These

collimated sprays of hadrons result from the fragmentation and hadronization of en-

ergetic quarks and gluons, processes governed by the strong interaction described

by Quantum Chromodynamics (QCD). Figure 1 illustrates the concept of factor-

ization [1] in high-energy electron-positron collisions, where complex hadronic final

states can be approximated and analyzed in terms of their originating quarks and

gluons. Since quarks and gluons can never be observed and studied directly, anything
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FIG. 1: Diagram of an electron-positron collision. The left-hand side is a cartoon
depiction of what the true structure of such a process might be. The right-hand side
is the way it is viewed within the theoretical procedure known as “factorization” [1],
where hadrons are approximately lumped into discrete clusters associated with def-
inite quarks and gluons. An issue that needs to be addressed by theorists is the
question of how the approximations used in factorization affect the kinematics of the
process.

we learn about them must come indirectly from the study of complicated final-state

hadronic observables like these. On the left of the figure, the intricate structure

of hadronic jets emerges from the fragmentation and hadronization of the quark,

antiquark, and radiated gluon. However, by applying the theoretical technique of

“factorization,” [1] as depicted on the right, the complicated hadron-level picture

is reduced to a more manageable partonic representation, where individual jets are

linked to specific initiating partons. This simplification allows for the application

of theoretical objects like fragmentation functions (see a discussion of these below),

which describe the probability of a parton transforming into observed hadrons, help-

ing researchers extract fundamental QCD parameters. Additionally, to utilize these

techniques, relativistic reference frame transformations must be used to isolate indi-

vidual jets from the rest of the event dynamics, allowing for a clearer interpretation

of jet substructure and momentum flow, and other final state properties. Combined

with other approximations, such as the collinear factorization framework and pertur-

bative QCD calculations, this procedure refines our ability to study the underlying

partonic interactions while minimizing contamination from soft and non-perturbative

effects.
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FIG. 2: Factorization theorems focus on individual clusters of hadrons and charac-
terize the properties of “jets” or fragmentation functions. For example, a theorist
who wishes to understand the properties of a single quark and how it transforms into
a cluster of hadrons will focus only on the part in the circle, with the hope that it
has minimal sensitivity to other parts of the final state.

Despite the complexity of hadronization, the overall energy and momentum dis-

tributions of jets are closely linked to their initiating partons, allowing jets to be

studied in terms of their underlying QCD dynamics. Early discoveries of jet struc-

tures in electron-positron collisions at PETRA and SLAC, followed by precision

measurements at the Large Electron-Positron Collider (LEP) and hadron colliders

like the LHC, have confirmed that jets provide a robust framework for probing the

fundamental nature of strong interactions.

To analyze the properties of individual jets in a collision event, it is often nec-

essary to apply reference frame transformations that isolate a jet’s motion from the

broader event dynamics, seen in Figure 2. Since collider experiments operate in

different kinematic regimes, such as electron-positron annihilation, where the center-

of-mass frame is well-defined, versus hadron collisions, where incoming partons carry

unknown momentum fractions, choosing an appropriate reference frame is crucial.

Transformations such as Lorentz boosts and rotations allow for a clearer interpreta-

tion of jet momentum, substructure, and energy flow, independent of the global event
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characteristics. By studying final states like these in optimal reference frames, one

can extract more precise information about their formation, improve comparisons

with theoretical predictions, and enhance searches for new physics phenomena that

may manifest within jet structures.

One particularly useful reference frame transformation in jet studies is the boost

to the jet rest frame, where the total momentum of a selected jet is set to zero. This

transformation allows researchers to examine the internal substructure of the jet

without needing to refer to the detailed kinematics of the overall scattering process.

For example, consider a high-energy proton-proton collision at the LHC that produces

a quark-antiquark pair. Each quark hadronizes into a separate jet, but due to the

complex momentum distribution of the initial protons, these jets are often produced

with significant boosts along the beam axis. By applying a Lorentz boost to the rest

frame of one of these jets, researchers can study its fragmentation pattern, energy

flow, and substructure independent of the overall motion imparted by the collision.

The fragmentation function formalism is a complementary approach to the jet

concept. A fragmentation function is a probability density to find a particular type

of hadron in the final state remnants of a quark or gluon. It depends on the fraction

of the largest component of quark momentum carried by the hadron and is usually

expressed as

Dh/i(ξ) (1)

where h is the type of hadron, i is the type of quark or gluon, and ξ is the momentum

fraction

ξ =
p+h
k+
, (2)

where p+h is the “plus” momentum (see next section) of the hadron h and k+ is the

plus momentum of the quark or gluon in a frame where it is moving fast along the

+z axis [5].

One of the most commonly studied fragmentation functions is the pion fragmen-

tation function, which describes how quarks or gluons fragment into pions (π+, π−,

or π0). A widely used fragmentation function in QCD is the leading-order parame-

terization for the fragmentation of a quark into a pion:

Dh/i(ξ,Q
2) = Nξα(1− ξ)β (3)

where Q2 is the energy scale of the process and N, α, and β are phenomenological
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parameters determined from experimental data. In the case, if ξ ≪ 1, the hadron

carries only a small fraction of the original quark’s momentum, meaning many low-

energy hadrons are produced. If ξ ≈ 1, the hadron takes nearly all of the quark’s

momentum, but such events are less probable due to the suppression by the third

factor in Equation 3. The fragmentation function evolves with the energy scale Q2,

meaning that at higher energies, more hadrons are produced, and their energy is

distributed over a broader range.

The choice of reference transformation depends on the research focus. Suppose a

researcher is interested in the momentum distributions of individual jet constituents.

In that case, they may perform a transformation to the jet rest frame, allowing them

to study how the jet’s energy is shared among its particles. In contrast, if the goal

is to compare jets across different collision systems (e.g., e+e− vs. pp collisions), a

transformation to a frame where the jet’s transverse momentum is fixed can help

normalize kinematic effects and facilitate direct comparisons. Similarly, in searches

for boosted heavy particles, such as a Higgs boson decaying into a pair of bottom

quarks, it is useful to transform to a frame where the parent particle is at rest, helping

to reconstruct its invariant mass with minimal contamination from the motion of its

decay products.

Ultimately, different researchers prioritize different aspects of jet behavior based

on their scientific objectives—precision QCD studies, new physics searches, or com-

parisons between theoretical predictions and experimental data. The choice of ref-

erence frame transformation is thus a key methodological decision that enables the

most relevant and insightful analysis of jet dynamics.

1.3 REVIEW OF THE BASIC FORMALISM

In the context of the desired transformation for my application, it is convenient

to use the light-cone coordinates, which I will define here. They are a reformulation

of the usual Minkowski space (t, x, y, z), particularly useful when a system has

a preferred axis and is highly relativistic, typically the z-axis, which is the beam

direction in a collider experiment. Instead of using conventional time and space

coordinates, one defines light-cone coordinates as follows:
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V + =
1√
2
(V 0 + V z), (4)

V − =
1√
2
(V 0 − V z), (5)

VT = (V x, V y) . (6)

Here, V + and V − are called the light-cone components, while VT represents the

transverse momentum components. The introduction of these variables makes certain

relativistic calculations more straightforward, especially in scenarios involving highly

boosted particles. Figure 3 displays the two light-cone coordinate axes relative to a

space-time diagram. The two axes lie along the world line of light in the positive and

negative z-direction.

FIG. 3: Space-time diagram with light-cone coordinate axes is shown schematically
for visualization. An e+e− collision occurs at t = 0 and produces a pair of jets with
back-to-back rapidity. The two dotted vectors represent possible unknown quarks
that could emerge from the collisions that are unaccounted for.

Scalar products play a fundamental role in relativistic physics, as they allow for

the calculation of invariant quantities. The scalar product of two four-vectors V and
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W in Minkowski space is usually written as

V ·W = gµvV
µW v

= V 0W 0 − V xW x − V yW y − V zW z (7)

The products generally involve the original coordinates multiplied by a transforma-

tion matrix. In the case of equation (4), the vectors are multiplied by the Minkowski

space-time metric, gµν . In light-cone coordinates, the product becomes

V ·W = V +W− + V −W+ − VT ·WT . (8)

This form is particularly useful in high-energy physics because it separates the lon-

gitudinal and transverse contributions. When a particle is highly boosted in the

z-direction, only one of the light-cone coordinates will dominate, making it easier to

analyze energy and momentum transfers in scattering processes.

The convenience of light-cone coordinates produces simple Lorentz boosts: a

simple multiplication of the original plus and minus coordinates with a rapidity

exponential, ey and e−y, respectively. Let us boost the coordinates in the z direction

to a new primed system, V ′µ. In the ordinary four-vector components, there are the

well-known formulae

V ′0 =
V 0 + vV z

√
1− v2

, (9)

V ′z =
vV 0 + V z

√
1− v2

, (10)

V ′x = V x , (11)

V ′y = V y . (12)

The boost in light-coordinates derives to the following:

V ′+ = V +eψ, (13)

V ′− = V −e−ψ, (14)

V ′
T = VT . (15)

The boost to the new light-cone coordinates depends only on the original com-

ponent and the hyperbolic angle, ψ = 1
2
ln1+v

1−v
. Notice that if we apply two boosts
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to the coordinates of parameters ψ1 and ψ2 the results is a boost ψ1 + ψ2. Thus, we

can easily apply multiple boosts of specified parameters and follow those changes in

light-cone coordinates.

Rapidity is a kinematic variable that provides a more natural way to describe the

motion of relativistic particles than velocity [6]. It is defined as

y =
1

2
ln

(
E + pz
E − pz

)
(16)

The rapidity variable is particularly useful in high-energy physics because, unlike

velocity, it transforms additively under Lorentz boosts. If a particle with rapidity y

is boosted by ψ, its new rapidity is simply:

y′ = y + ψ (17)

This property greatly simplifies calculations in collider experiments, where particles

and reference frames experience multiple boosts. In experimental settings, pseudo-

rapidity η is often used instead of rapidity because it depends only on the angle of a

particle relative to the beam axis:

η = − ln tan
θ

2
(18)

For massless or highly energetic particles, η and y are nearly identical, making

pseudo-rapidity a convenient experimental proxy for rapidity.

One of the reasons rapidity is so useful in high-energy physics is that the distri-

bution of final-state particles in hadronic collisions is often approximately uniform in

rapidity. This means that analyzing data in terms of rapidity rather than standard

spatial coordinates provides a clearer picture of the underlying dynamics.

For example, in a proton-proton collision, the produced hadrons tend to be uni-

formly distributed in rapidity, which suggests that rapidity and transverse momentum

are the most natural variables for analyzing jet structures.

In the context of the application, a boost is conditioned to bring the new reference

frame to V + = AV −, where A is a constant. The simple and defined forms of

boosts and rapidity in light-cone coordinates make automated calculations to a new

reference frame with the laid-out conditions possible. A formula for the rapidity and

transformation can be derived as a function of the original vector components.
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CHAPTER 2

MATLAB APPLICATION PROCESS AND FUNCTION

2.1 APPLICATION COMPONENTS AND FUNCTION

The purpose of the application I built with MATLAB application designer is to

use two four-vectors specified by the user in the lab frame to define a new reference

frame and determine the transformation matrix. Then, the user may supply up to

four additional different vectors to be transformed into the new reference frame, where

they may be plotted and visualized exactly, and the effects of the transformation on

various approximations may be understood. The vectors in both the original and

transformed frames will be plotted and compared.

Two reference vectors must be specified in the lab frame to establish a unique

new reference frame. Just one vector can be aligned along a specified axis (z-axis),

and this partially defines a new reference frame, but there remains the freedom to

rotate this system around the z-axis. Thus, a second vector aligned on a plane will

specify the rotation and complete the specification of the new reference frame. In

my notation, the first vector, V , will be aligned to the z-axis. The second vector, Y ,

will be aligned to the xz-plane.

V µ = (V 0, V x, V y, V z) → V
′µ = (V

′0, 0, 0, V
′z) (19)

Y µ = (Y 0, Y x, Y y, Y z) → Y
′µ = (Y

′0, Y
′x, 0, V

′z) (20)

The procedure of the application is to apply the transformation outlined above

to various vectors as defined by the user, either by direct input of the individual

vector components or parametrically. The application’s layout is divided into input

and output/plot.

The new reference frame is defined to be boosted such that V + = AV −. As an

example, the value of the constant A will equal ten in our sample calculations, but any

nonzero value is allowed. A boost and multiple rotation matrices are applied to the

original vectors to transform the two vectors in the new reference frame completely.
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Solving for components for the final transformation matrix in terms of the original

vector components, we found the transformation matrix,

Lµv =


1
2
eyT−yr(1 + Vz

v
) 1

2
eyT−yr(1− Vz

v
) eyT−yrVx

v
√
2

eyT−yrVy
v
√
2

1
2
eyT−yr(1− Vz

v
) 1

2
eyT−yr(1 + Vz

v
) − eyT−yrVx

v
√
2

− eyT−yrVy
v
√
2

− Vx
ṽ
√
2

Vx
ṽ
√
2

Vz
ṽ

0

− VyVz
vṽ

√
2

VyVz
vṽ

√
2

−VyVx
vṽ

v
ṽ

 . (21)

The abbreviation used in the matrix are defined as

v =
√
V 2
x + V 2

y + V 2
z , (22)

ṽ =
√
V 2
x + V 2

z , (23)

e2yT = A , (24)

e2yr =

∣∣∣∣V0 + v

V0 − v

∣∣∣∣ . (25)

One result of this project is a compact expression for this transformation that

can be used with any choice of variables. The above matrix will transform the V

and Y vectors into the new reference frame. V will be aligned along the z-axis, and

to fully specify the frame, one final rotation will align Y on the xz-plane:

Rµ
ν =



1 0 0 0

0 1 0 0

0 0 f
√
1− f 2

0 0 −
√
1− f 2 f


. (26)
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Some other useful abbreviations are

YL
x =

V zY x − V xY z

ṽ
(27)

YL
y =

V x2Y y − V xV yY x + V z(V zY y − V yY z)

ṽv
(28)

f =
Y x
L /Y

y
L√

1 +
Y x
L

2

Y y
L

2

(29)

f̃ =
√

1− f 2 (30)

∆ = yT − yr (31)

R+ = 1 +
V z

v
(32)

R− = 1− V z

v
. (33)

Combining the two transformation matrices, we get the complete matrix to transform

to the new reference frame:

Λµν = Rµ
ν′L

ν′
ν (34)

with

Λµν =



1
2
e∆R+ 1

2
e∆R− e∆ V x

v
√
2

e∆ V y

v
√
2

1
2
e−∆R− 1

2
e−∆R+ −e−∆ V x

v
√
2

−e−∆ V y

v
√
2

− V x

ṽ
√
2
f − f̃ V

yV z

vṽ
√
2

V x

ṽ
√
2
f + f̃ V

yV z

vṽ
√
2

V z

ṽ
f − f̃ V

yV z

vṽ
f̃ ṽ
v

V x

ṽ
√
2
f̃ − f V

yV z

vṽ
√
2

− V x

ṽ
√
2
f̃ + f V

yV z

vṽ
√
2

−V z

ṽ
f̃ − f V

yV z

vṽ
f ṽ
v



(35)

These equations form the basis for the base code that operates in the MATLAB



13

application.

2.1.1 INPUT

The left-hand side of the application window hosts dialog boxes for the individual

four-vector Cartesian coordinates for the various vectors. There are 6 vectors to input

component values for: the V and Y vectors that are the basis for the new reference

frame, and up to four candidate W vectors to transform to the new frame shown

in Figure 4. In practice, these extra W vectors will usually correspond to other

momentum, coordinate, and/or spin vectors that are involved in the process. For

instance, it could be input to represent the momentum of one of the extra quarks not

directly involved in the production of the hadron or jet. The interface informs the

user of vector categories with bold headings. Each vector’s text is also color-coded

to the same color that the vector will appear on the output plots. To insert a vector

component value, the user must select the desired dialog box with their mouse cursor

and input a numeric value. The application will automatically process the change.

The user does not need to press a button or keybind to update the output of the

application.

The first W vector is always enabled, making sure the user has at least one

candidate vector to examine. Some buttons enable the subsequent W vectors, and

all of the previous W vectors need to be enabled to enable the next one. Checking

the ‘Add 2nd W Vector’ button will allow the W µ
2 to be edited, and the same for the

third and fourth candidate vectors. When a vector is enabled, it will be transformed

to the new reference frame. It will also appear on both output plots on the right-hand

side of the application’s interface.

Instead of directly inputting the value for a vector component, the user can click

the ‘P’ button beside one of the reference vector’s components to open another ap-

plication window to generate a value parametrically. Details about this process are

discussed in Section 2.2.1.

Output

The right-hand side of the application window houses the two 3-D plots to output

the vectors. In Figure 4, the top plot titled “Original Vectors” plots the original V µ,

Y µ, and selected W µ
i . The bottom plot will output the vectors in the new reference

frame. In Figure 4, the red vector, V µ, is transformed to align along the z-axis, and
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FIG. 4: The Main Application Window with input on the left and output plots on the
right. V and Y are located at the top left of the window, under the ‘Reference Vectors’
header. To edit the components for the W2, W3, and W4 vectors, the corresponding
‘Add n-th W-vector’ checkbox must be checked. On the output side, the top plot
displays the vectors in the original lab frame, and the bottom plot represents the
vectors in the new transformed frame. Only the vectors enabled in the input section
will be displayed on the two plots.
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the blue vector, Y µ, lies on the xz-plane to complete the reference frame. In addition

to the plots, four dialog boxes output the zero component of the transformed vectors

for V µ, Y µ, W µ
1 , and W

µ
2 . This is because the zero component of the four-vector is

not visible in the 3D vector plot.

The user can hover over the top right corner of both plots to select various viewing

tools. These include a pan, rotation, zoom in, and zoom out of the 3D space. To get

the exact component values of each vector in the transformed frame, the user can

hover over the head of the desired vector, and a small box will appear with the x, y,

and z components of the vector. If the user clicks the head of the vector, the box

will lock in view on the plot.

2.2 OTHER APPLICATIONS CALLED BY THE MAIN

APPLICATION

2.2.1 PARAMETRIZATION

To the right of the reference vectors in the input section of the main application,

there are two buttons labeled ‘P’ for parameters. When the user clicks on one of the

buttons, an additional application window will open. That window will allow the user

to enter values for parameters that will be used to obtain values for the components

of the reference vectors. For example, in Figure 5, the application has input boxes

for the magnitude, direction, and energy of two hadron momentum vectors. The

corresponding unit vectors will be generated accordingly. When the user clicks the

‘apply’ button, the window will close, and the reference vector will update based on

a defined formula based on the parameters in the code.

2.2.2 2D VECTOR PROJECTIONS

At the top of the output section of the main application window, there are buttons

to view the 2D projections of the displayed vectors before and after the transforma-

tion. This feature can help visualize angles between vectors or their values in certain

2D planes.

2.3 DEMONSTRATIONS

The process we use for illustration is electron-positron colliding and annihilating
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at high center-of-mass energy, producing two hadrons in the final state and unob-

served “X” states

e+(l)e−(l′) −→ h1(p1)h2(p2) +X . (36)

In the lab center-of-mass frame, the virtual photon momentum q has zero momentum

and energy Q,

qγ = lγ + l′γ = (Q,0) =

(
Q√
2
,
Q√
2
,0T

)
light cone variables

. (37)

The γ subscripts mean the components are in the lab (or “photon”) frame. The two

hadrons’ momenta, based on their energies and 3-vector magnitudes, are

p1,γ = (E1,γ, |p1,γ|n1,γ) , p2,γ = (E2,γ, |p2,γ|n2,γ) . (38)

In lightcone variables, the momenta are

p1,γ =
1√
2
|p1,γ|

(
E1,γ

|p1,γ|
+ nz1,γ,

E1,γ

|p1,γ|
− nz1,γ,nT1,γ

√
2

)
, (39)

p2,γ =
1√
2
|p2,γ|

(
E2,γ

|p2,γ|
+ nz2,γ,

E2,γ

|p2,γ|
− nz2,γ,nT2,γ

√
2

)
. (40)

The n vectors are unit 3-vectors,

||n1,γ|| = ||n2,γ|| = 1 . (41)

An alternative photon frame, called the Collins-Soper frame, is rotated from the lab

frame to align the hadrons conveniently. We define X and Z four-vectors,

Xµ =
(0,n1,γ + n2,γ)

|n1,γ + n2,γ|
, Zµ =

(0,n1,γ − n2,γ)

|n1,γ − n2,γ|
. (42)

The x and z axes are taken to be the spatial components of Xµ and Zµ, and the y axis

follows from the right-hand rule. The Collins-Soper frame is useful for applications

where a pair of measured hadrons (say, pions) have nearly momenta that are nearly

equal in magnitude but opposite in directions. See, for example, Section 13.2 of

Ref. [7]. Then, the transverse component of q becomes a measure of slight deviations

from back-to-back.
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In units where energy is GeV/c2 and the speed of light is c = 1, the lab frame

four-vectors for this transformation to be used for illustration are defined as

p1,γ = (0.5, 0.5n1,γ) GeV (43)

p2,γ = (0.99,n2,γ) GeV (44)

n1,γ = (0.4738, 0.508, 0.7193) (45)

n2,γ = − (0.75, 0.433, 0.5) . (46)

I have taken the n vectors to be nearly equal in magnitude but opposite in sign,

similar to what is illustrated schematically in Figure 3, to evoke a typical case dealt

with by the Collins-Soper frame.

Figure 5 shows the input parameters for the hadron momenta to transform from

the lab frame to the Collins-Soper frame [7]. All momentum and energy components

are in units of GeVs. The two direction angles define the components of the unit

vectors. The unit vectors are then substituted in Equation 42 to generate the Xµ

and Zµ vectors.

FIG. 5: Parameters of two hadrons in transformation from the lab frame to the
Collins-Soper frame. The two direction angles for the momenta determine the n1

and n2 vectors. Both momenta and energies are in units of GeV and c = 1.

The next step is to see how the transformation affects vectors other than the ones

we used to define the transformation. These could be, for example, momenta for

other quarks, gluons, or hadrons in the collision process. I will call any such other

vectors in the transformation process “candidate” vectors. The first candidate W µ

vector can be considered a quark moving along the direction of p1 with a smaller
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magnitude, which could represent one of the dotted vectors in Figure 3, defined as

W µ
1 = (0.1, 0.1w1,γ)GeV (47)

w1,γ =

(
0.5, 0.5,

√
2

2

)
. (48)

Throughout the rest of this text, I will use units where c = 1. The second candidate

W µ vector is the second defined hadron momentum used to obtain the Xµ and Zµ

vectors,

W µ
2 = pµ2,γ . (49)

In the lab frame, it is transformed to the Collins-Soper frame. Using the definitions

of Xµ and Zµ in Eq. (42), I generated the desired Y µ and V µ vectors, respectively,

for the transformations using the application. In Figure 6, the transformation with

the parameters from Figure 5 is displayed in the main application window. The two

W µ vectors defined in Eqs. (47,49) are shown in the original vector output plot by

the black and green vectors, respectively. Then, the application transforms the vec-

tors to the Collins-Soper frame defined by Xµ and Zµ in Eq. (42). Figure 7 shows

the 2-D projections of each vector present in the Figure 6 plots.

An additional frame worth considering as an example is the so-called “hadron-

frame.” One complication it will highlight is that the transformation matrix in

Eq.(35) is insufficient to account for all possible reference frames one might hope to

consider. However, it will also illustrate how any reference frame can be formed from

a combination of Eq.(35) transformations. The hadron frame is a frame where the

hadrons move exactly along the z-axis with no transverse (x or y) components [8].

We will indicate it with H subscripts. The virtual photon has zero rapidity, meaning

that in this frame, the virtual photon has no momentum in the z-direction. Thus,
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FIG. 6: Application Window of Transformation from the Lab frame to the Collins-
Soper frame. Lab frame plot: the rightmost (red) is Zµ, the leftmost (blue) is Xµ, p2
(green) is pointing in the negative direction, and the small middle vector is the quark
(black). Collins-Soper frame: Zµ is aligned to z-axis, p2 is second-largest vector, X

µ

is largest vector, quark is the smallest vector

FIG. 7: (left) 2D projections of vectors in lab frame: Zµ is the rightmost (red) vector
on the XY and XZ projections, the quark is the smallest vector (black) on each plot,
Xµ is the rightmost (blue) vector on the YZ projection, p2 (green) is the vector with
negative components. (right) 2D projections of vectors in Collins-Soper frame: Zµ

aligned to z-axis, Xµ is on xz-plane, quark is the smaller vector, p2 is the other
remaining vector.
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q+H = q−H . The momenta in the hadron frame in light-cone variables are

qH =
(
q+H , q

+
H , qH,T

)
=

√Q2 + q2H,T
2

,

√
Q2 + q2H,T

2
, qH,T

 , (50)

p1,H =

(
p+1,H ,

m2
1

2p+1,H
,0H,T

)
=

(
ξ1q

+
H ,

m2
1

2ξ1q
+
H

,0T

)
, (51)

p2,H =

(
m2

2

2p−2,H
, p−2 ,0H,T

)
=

(
m2

2

2ξ2q
−
H

, ξ2q
−
H ,0H,T

)
. (52)

We have defined for convenience the boost-invariant momentum fractions,

ξ1 ≡
p+1,H
q+H

=
p1 · q

Q2 + q2H,T
+

√√√√( p1 · q
Q2 + q2H,T

)2

− m2
1

Q2 + q2H,T
, (53)

ξ2 ≡
p−2,H
q−H

=
p2 · q

Q2 + q2H,T
+

√√√√( p2 · q
Q2 + q2H,T

)2

− m2
2

Q2 + q2H,T
. (54)

The expressions after the second equals sign provide Lorentz invariant definitions for

the lightcone momentum fractions. In general, the square roots could have minus

signs in front of them. We keep the plus signs because this gives a back-to-back

configuration when m2
1/Q

2,m2
2/Q

2 → 0 with the z-axis lying along the direction of

hadron 1. Notice also that

2p1 · p2 = 2ξ1ξ2q
+
Hq

−
H +

m2
1m

2
2

2ξ1ξ2q
+
Hq

−
H

=
(
Q2 + q2H,T

)
ξ1ξ2 +

m2
1m

2
2

ξ1ξ2
(
Q2 + q2H,T

) . (55)

If we take masses to be small relative to Q, then

2p1 · p2 = ξ1ξ2
(
Q2 + q2H,T

)
, (56)

2p1 · q = ξ1
(
Q2 + q2H,T

)
, (57)

2p2 · q = ξ2
(
Q2 + q2H,T

)
. (58)

So,

ξ1 ≈
p1 · p2
p2 · q

, ξ2 ≈
p1 · p2
p1 · q

. (59)
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Let us define two more vectors,

P ≡ p1 − p2 R = p1 + p2 . (60)

In the hadron frame,

PH =

(
ξ1q

+
H − m2

2

2ξ2q
−
H

,
m2

1

2ξ1q
+
H

− ξ2q
−
H ,0HT

)
, (61)

RH =

(
ξ1q

+
H +

m2
2

2ξ2q
−
H

,
m2

1

2ξ1q
+
H

+ ξ2q
−
H ,0HT

)
(62)

Now we can start in the lab frame and use the application to look at vectors in the

Collins-Soper and hadron frames. In the first case, Z will correspond to the V vector

and X will correspond to the Y vector. In the hadron frame case, we will use two

steps.

1. First, use R as the V vector and p2 as the Y vector. We will use A = 1 to align

the R to the z-axis and ensure the p2 and p1 will have the same x-components

in magnitude and equal angles to the x-axis. This will ensure the sum and

difference of the two vectors align on the z-axis in the transformation to the

hadron frame.

The result will be a vector corresponding to Eq. (61), but p1 and p2 may have

nonzero transverse components.

2. Repeat step 1, but using the output vectors of step 1 as input. Let the vectors

with components resulting from step 1 be labeled with an H ′ subscript. Then,

in the second step, use PH′ as the input V vector and qH′ as the input Y vector.

For the second step, use

A =
P+
H

P−
H

=
2ξ21ξ2q

+
H

2 − ξ1ξ2m
2
2

2ξ1ξ22q
+
H

2 − ξ1ξ2m2
1

=
2ξ1
(
Q2 + q2H,T

)
−m2

2

2ξ2
(
Q2 + q2H,T

)
−m2

1

. (63)

This will give the final hadron frame components.

For an example for the transformation from the lab frame to the hadron frame using
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FIG. 8: Transformation from lab frame in Eqs. (63-70) to H ′ frame. Lab frame
from bottom to top in clockwise order: p2 (blue), R (red), p1 (magenta), P (black),
q (green) is not visible. H ′ frame: R is aligned to z-axis, p2 is the left vector, P is
the larger right vector, q is vertical vector, p1 is the smaller right vector.

my application. I defined the vectors in the lab frame as the following:

p1,γ = (1.0, 1.0n1,γ) GeV (64)

p2,γ = (0.5, 0.5n2,γ) GeV (65)

n1,γ = (0.5, 0.5, 0.707) (66)

n2,γ = − (0.75, 0.433, 0.5) (67)

qγ = (Q,0) (68)

Q = 10GeV (69)

m1 = 0.1GeV (70)

m2 = 0.2GeV. (71)

To obtain the corresponding values for ξ1 and ξ2, I used the approximation in Eq.

(59). Then, I manipulated equation (56) to obtain the value for
(
Q2 + q2H,T

)
. The
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FIG. 9: 2D projections of lab frame vectors from left to right in clockwise order: p2
(blue), R (red), p1 (magenta), P (black), q is not pictured

values I obtained were

ξ1 = 0.1945, ξ2 = 0.0973 ,(
Q2 + q2H,T

)
= 10.28 GeV2 .

Finally, I determined the value needed for A in the second step of the transformation

using Eq. (63), which was calculated to A = 1.9981. In future improvements of the

application, the exact equations (53 - 55) for ξ1, ξ2, and
(
Q2 + q2H,T

)
will be used, but

the approximations are sufficient to demonstrate the hadron frame transformation

simply. In Figures 8, 9 and 10, the output from step 1 is shown. The red R vector

is transformed to have no 3-vector components due to how the R vector is defined

in Eq. (60), the two hadron vectors become antiparallel. The exact values of the
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FIG. 10: 2D projections ofH ′ frame vectors: RH′ (red) is the smaller vector aligned to
z-axis, qH′ (green) is large vector aligned to the z-axis, p2,H′ (blue) has the negative
x-component, PH′ (black) is the largest vector with a positive x-component, p1,H′

(magenta) is remaining vector.

vectors in the H ′ frame are below:

p1,H′ = (0.9398, 0.2960, 0, 0.6315) GeV (72)

p2,H′ = (0.0465,−0.2960, 0,−0.6315) GeV (73)

PH′ = (0.8932, 0.5920, 0, 1.2630) GeV (74)

RH′ = (0.9863, 0, 0, 0) GeV (75)

qH′ = (4.807, 0, 0,−3.9567) GeV. (76)

The vectors from Eqs. (72 - 76) were then applied to the application, and the

rapidity in the application’s code was changed to 2.0001, calculated using Eq. (63).

Figure 11 shows the application window for the transformation to the hadron frame,

and Figure 12 displays the hadron frame vectors. As intended, the hadron vectors

and PH and RH are aligned along the z-axis.
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FIG. 11: Transformation from H ′ frame in Equations 72-76 to H frame. H ′ frame
from most negative to most positive x-component: p2,H′ (green), RH′ (black), p1,H′

(magenta), PH′ (red); qH′ (blue) is the vertical vector. H frame from most negative
to most positive z-component: p2,H (green), RH (black), p1,H (magenta), PH (red);
qH (blue) is the large vector
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FIG. 12: 2D projections of H frame vectors from most negative to most positive
z-component: p2,H (green), RH (black), p1,H (magenta), PH (red); qH (blue) is the
large vector with transverse components.

The vectors in the hadron frame are

p1,H = (0.7662, 0, 0, 1.1303) GeV , (77)

p2,H = (−0.304, 0, 0,−0.7331) GeV , (78)

PH = (1.071, 0, 0, 1.8633) GeV , (79)

RH = (0.4616, 0, 0, 0.3971) GeV , (80)

qH = (0.573, 1.6793, 0,−5.9328) GeV . (81)
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CHAPTER 3

CONCLUSION

The primary motivation behind developing this MATLAB application was to pro-

vide a practical and efficient solution for performing reference frame transformations

necessary for analyzing hadronic jets in high-energy physics. In particle and nuclear

physics experiments, understanding the dynamics of jets (and other final state struc-

tures) and their originating partons requires precise transformations to frames like

the Collins-Soper and hadron frames. These transformations are essential for isolat-

ing individual jet dynamics, understanding the influence of small non-perturbative

effects, and applying factorization approximations accurately.

An important step in the application is the derivation of compact and adaptable

transformation matrices, which can handle any choice of variables, simplifying cal-

culations that traditionally involve complex algebraic manipulations that need to be

repeated for each new physical scenario. By automating this process, the application

minimizes the risk of human error and significantly speeds up the analysis, making

it accessible to researchers regardless of their level of expertise in QCD formalism.

This automation allows one to quickly test the approximations used in applications

of factorization frameworks and approximations, making it a valuable tool for both

theoretical exploration and experimental analysis of jet phenomena.

The MATLAB application I created is organized into two main sections: input

and output. On the left, users input the Cartesian coordinates of vectors, including

the two reference vectors, V and Y , and up to four candidate vectors, W , to be

transformed. Each vector’s components can be entered manually, with automatic

updates displayed in the output. For more dynamic input, the application provides

a parameterization feature through “P” buttons, opening a secondary window where

users can input values like magnitude, direction, and energy. The right side of the

application shows two 3D plots: the first visualizes the vectors in their original frame,

and the second displays the transformed vectors. Users can interact with the plots to

examine vector components and adjust the viewing angle. The application also offers

2D projections for better visualization of angular relationships. The combination of
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user-defined input and detailed output makes the application a valuable tool for

analyzing and interpreting hadronic jet phenomena in high-energy physics.

In future iterations of the application and demonstrations, exact definitions will

be used, such as those for the hadron frame in Eqs. (53 - 55), in place of the

approximations used for the demonstration in this document. The application can

also be updated to include automatic updates of rapidity values and vectors. A

potential feature could include the ability to automatically apply output from one

transformation to the input vectors to perform an additional transform.

The use of the application to study specific approximations still also needs to

be performed. This can start with the e+e−-annihilation into back-to-back hadrons

examples we have used for illustration. However, many other interesting cases involve

complex kinematics. One is the production of “dihadrons,” wherein a pair of high-

speed hadrons moves in nearly the same direction as one another [9]. Another is

the treatment of electromagnetic radiation in deep-inelastic scattering, where the

emission of photons distorts the hadronic kinematics [10].
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2024, he participated in an REU program at Mississippi State University focusing

on computational methods with applications in materials science. He has received

several academic awards, including the ODU Presidential Scholarship, the Hamp-

ton Roads Community Foundation Scholarship, and the PlayVS FIFA Champion

Scholarship. His research interests include high-energy and nuclear physics. Upon

graduation, he plans to continue his studies in physics at the graduate level.
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